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Abstract. We study the dynamics of a simple bistable system driven
by multiplicative correlated noise. Such system mimics the dynamics of
classical attractor neural networks with an additional source of noise as-
sociated, for instance, with the stochasticity of synaptic transmission.
We found that the multiplicative noise, which performs as a fluctuating
barrier separating the stable solutions, strongly influences the behaviour
of the system, giving rise to complex time series and scale-free distribu-
tions for the escape times of the system. This finding may be of interest
to understand nonlinear phenomena observed in real neural systems and
to design bio-inspired artificial neural networks with convenient complex
characteristics.
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1 Introduction

Attractor neural networks (ANN) have been a topic of high interest in the last
decades. Most of the paradigmatical approaches in this field consider a number
of bio-inspired elements from biological neural systems and study the computa-
tional properties of the resulting model, leading to hints and developments in
neuroscience and computer algorithm design. One of the most notable models of
ANN is the one proposed by Amari and Hopfield [1,2]. This model assumes a net-
work of N binary neurons linked by connections of certain strength, also called
synapses. By considering a simple learning rule based on neurophysiological data
[3], this network is able to store a certain number P of patterns of activity. After
this learning, the network is able to recover one of these activity patterns from
an initial configuration correlated with this pattern, a property which is called
associative memory. While the behaviour of such models is highly nonlinear, one
can derive analytical solutions [4] which help to reach a better understanding for
simple and hypothetical situations. For instance, if one assumes that the number
of stored patterns does not scale with the size of the network, the previous model
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is simplified to a bistable system. This is a common approach employed when
one is interested in the dynamics of the network activity instead on its storing
capacities [5]. It has been employed, for instance, to study the influence of the
network topology [6], or the switching between different patterns of activity due
to short-term synaptic mechanisms [7,8].

In this work, we employ a simplified bistable model, which mimics the dy-
namics of attractor neural networks in the limit of P � N , to study the effect
of multiplicative colored noise in the dynamics of the system. Such noise resem-
bles the stochastic nature of synaptic transmission [9] (which may be relevant
to transmit information through dynamic synapses [10,11]), or other sources of
colored noise which could affect the dynamics in a multiplicative way. We found
that this multiplicative colored noise strongly affects the dynamics of the sys-
tem, giving rise to complex time series and scale-free distributions for the escape
times of the dynamics. Our results could be of interest to understand nonlin-
ear phenomena observed in real neural systems and to design new paradigms in
bio-inspired artificial neural networks.

2 Model and Results

We consider a bistable system characterized by the variable y(t), which repre-
sents the level of activity of the neural network. This variable evolves according
to the following discrete dynamics

y(t + 1) = tanh[z(t)y(t)] + ξ(t), (1)

Here, the variable z(t) is a Gaussian colored noise with mean one, standard
deviation σ and correlation time τ . It represents a source of correlated noise
associated with the stochasticity of the synaptic transmission, for instance. The
term ξ(t) is an additive Gaussian white noise of zero mean and standard devia-
tion δ. This term takes into account other possible sources of non-multiplicative
noise, and is also employed to prevent the system to be locked in the solution
y = 0, since the fluctuations due to the multiplicative noise cannot influence the
system in this point. In the following, we focus on the role of the correlation time
in the dynamics, and therefore we fix the level of the fluctuations σ = 50 and
δ = 0.1. Similar models of bistable systems driven by multiplicative noise have
been previously studied [12,13,14]. However, a detailed study of the statistics of
the dynamics, which is highly relevant to understand certain collective behaviour
in neural systems, is still lacking. A more complete study of the influence of these
parameters will be published elsewhere [15].

From a mathematical point of view, we can see in Eq. (1) that the variable
z(t) represents the barrier height of our bistable system. For fixed z < 1, our
system can be viewed as a particle in a single well potential in the presence
of fluctuations (given by ξ(t)). Thus, y(t) will be fluctuating around the only
stable solution of the dynamics, y = 0. On the other hand, for fixed z > 1 we
have a particle in a double well potential in the presence of fluctuations (given by
ξ(t)). In this situation, the particle will be jumping, or switching, from one stable
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Fig. 1. (Color online) Several realizations of the time evolution of y(t) and z(t), for
different values of the correlation time τ . The series correspond, from top to bottom,
to τ = 0, τ = 10 and τ = 100, respectively. The mean and variance of z(t) have been
conveniently rescaled in each case for a better visualization (see labels in each plot).

solution to the other in a stochastic manner. The fact that z has not a fixed value
but it is also a fluctuating magnitude introduces a high level of complexity which
is the aim of this study. For instance, we can control the characteristics of the
barrier height by varying the correlation time τ . This variation has a dramatic
effect in the dynamics of y(t), as one can see in figure 1. The three plots in the
figure shows the relation between the dynamics of y(t) and z(t): for z(t) < 1, the
variable y(t) rapidly fluctuates around the solution y = 0, and for z(t) > 1 we
enter in the double well regime and y(t) starts to swith between the symmetric
stable solutions y+ � +1 and y− � −1. The switching dynamics has a strong
dependence with τ , as the figure also shows. For low values of τ the switching
is random and has a high frequency, but when τ is increased, some intervals of
prolonged permanence in a particular solution appear. Concretely, high values
of the correlation time induces drastic modifications in the probability of the
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Fig. 2. Probability distribution of escape times for different values of τ . We can see
that increasing of the correlation time yields the appearance of power-law distributions
in escape times, which reflects the change in the statistics of the dynamics of y(t). The
obtained power-law distribution is defined as P (T ) ∼ T −γ , with the exponent taking
a value of γ � 2.

system to jump between stable solutions after a given interval T , that is, in the
probability distribution of escape times.

A more detailed study of the influence of τ in the escape time probability is
shown in figure 2. One can observe that the probability distribution of the escape
times is an exponential distribution for low values of τ , as it is well known. In
this situation, the variable z(t) behaves approximately as a white noise, and
therefore z(t) is continuously crossing the value z = 1. As a consequence of that,
the double well configuration is only maintained by a very short time, and long
periods of permanence in the solutions y+ or y− are unlikely to occur. However,
when the value of τ is increased, the excursions of the variable z(t) in the region
of z > 1 become longer in time and z(t) can eventually take values which are
far from z = 1. These two factors combined allow the system to eventually stay
in one of the stable solutions y+, y− for long periods of time, as it is shown
in bottom panel of figure 1. These eventually long intervals of permanence in
a double well solution are reflected in the probability distribution of escape
times as a scale-free relationship, which mathematically corresponds to a power-
law function P (T ) ∼ T−γ. We found an approximate value of γ � 2 for the
exponent.
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Fig. 3. The entropy function, as defined in the main text, for different values of the
correlation time τ . We can observe a minimum in the entropy which approximately
corresponds to the value of τ for which scale-free escape times distribution appears.

Finally, to complete the study of the dynamics of the system, we have com-
puted a measure of the irregularity of the time series of y(t), for different values
of the correlation time τ . This measure is defined as an entropy of the form

S ≡ −
∑

x

p(x) log2 p(x) (2)

Here, p(x) is the normalized power spectrum of the time series of y(t) for a
given value of τ . It is worthy to note that this entropy depends strongly on the
dynamics of the system (via the power spectrum), and therefore it is influenced
by the value of τ . In figure 3, we can see that the entropy reaches a minimum
around the value of τ for which the scale-free distributions for the escape times
appear. This is due to the fact that, in this situation, long permanence times
in stable double well solutions are allowed eventually, and such permanence
decreases significatively the complexity of the time series of the system. Thus,
the influence of τ in the dynamics of y(t) is also notorious when studying the
complexity of the dynamics with multiple methods.

3 Conclusions

We have studied the dynamics of a simple bistable system under the influence
of multiplicative colored noise. The results show a high impact of considering
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high values of the correlation time in the dynamics of the system, and some
nonlinear characteristics such as scale-free distributions and minima of entropy
are found. One can think that the consequences of such complex behaviour in
real neural systems, such as populations of cortical neurons connected by highly
fluctuating synapses, could be relevant for different neural protocols of process-
ing and coding of information. It has been experimentally found, for instance,
that a multiplicative modulation of the noise intensity (that is, modulations
in the variance of the noisy input) can be tracked much faster than additive
modulations of noise (that is, modulations in the mean input) by neural popu-
lations [16]. Such fast tracking properties associated with multiplicative noises
could be related with the high stimulus sensitivity present in critical systems
as the one we have analyzed. On the other hand, several studies indicate the
possible existence of criticality in other situations in the brain (see, for instance,
[17]). Further study of these characteristics could also reveal strategies to imple-
ment the benefits obtained with this type of dynamics in bio-inspired computer
algorithms.
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