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Abstract. [t is shown that by restricting the number of active neurons
in a layer of a Boltzmann machine, a sparse distributed coding of the in-
put data can be learned. Unlike Winner-Take-All, this coding reveals the
distance structure in the training data and thus introduces proximity in
the learned code. Analogous to the normal Radial Basis Boltzmann Ma-
chine, the network uses an annealing schedule to avoid local minima. The
annealing is terminated when generalization performance deteriorates. 1t
shows symmetry breaking and a critical temperature, depending on the
data distribution and the number of winners. The learned structure is
independent of the details of the architecture if the number of neurons
and the number of active neurons are chosen sufficiently large.

1 Introduction

In biological systems it is assumed that objects in the outside world are encoded
by a sparse distributed code where the input data is encoded by several feature
vectors, one for each active neuron in the code. The important advantage of
this sparse coding is the ability of obtaining knowledge about the underlying
structure of received data by the coding of the objects. When two objects share
an active neuron in their coding, they share a property encoded by the feature
vector belonging to the neuron. By the number of active neurons that overlap,
the distances in a high dimensional pattern space of the these objects can be
found. Thus the complete topology of places of objects and distances between
objects in pattern space can be deduced. Koenderink [4] showed that this can
be done in biological systems by fully using the modalities (and the cohesion
within the modalities) of the perceptual data the biological brain perceives.

In 1994 Kappen [2] introduced lateral inhibition in a Boltzmann machine to
reduce the computational costs of executing this Boltzmann machine. By allow-
ing a restricted number of neurons to become active, the Boltzmann Machine
encodes all objects by a sparse distributed code. In this paper we will show that
with the use of this architecture, called a Many-Take-All network, the extra
distance information from the input data can be encoded by a set of neurons.
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In Section 2 we will start with a general introduction of a Boltzmann ma-
chine with a restricted number of winners. In Section 3 the annealing schedule
and symmetry breaking will be explained. We will show in Section 4 that in
contrast with the Winner-Take-All network a Many-Take-All network can learn
all topological information of data which can easily be inspected by looking at
the coding In addition we show that in high dimensional data spaces the Many-
Take-All network can offer a more compact representation.

2 The restricted Boltzmann machine

The Boltzmann Machine we will consider consists of a set of neurons x =
(®1,...zn), ; € R, and a set of hidden neurons s = (s1, ..., s1),s; € [0, 1]. We call
the connections between x and s w;;. We will also use thresholds in the hidden
layer, which will be called #;. By presenting training patterns x this Boltzmann
machine can learn the probabilities associated with these training patterns (the
probability of pattern x will be called ¢(x)). During the training of this Boltz-
mann machine a partition function has to be calculated. The number of terms
in this partition function depends in an exponential manner on the size of the
network so it is very time consuming to train this network.
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Fig. 1. The architecture of a Radial Basis Boltzmann machine. x are input
neurons and s are hidden neurons. The connections with circles are inhibitory
weights, the connections with arrows are learnable.

We can, as shown by Kappen [2], introduce lateral inhibition in the hidden
layer of a Boltzmann machine. Then the number of permissible states in the
network and so the number of terms in the partition function will be reduced.
This results in a serious reduction of the required training time. We add an
threshold J(2hg — 1) to each neuron, where J > 0 the strength of the lateral
inhibition (see Figure 1). If hy neurons are permitted to be ’on’, then the local



field of hidden unit j becomes
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In the limit of an infinite strong lateral inhibition the p(x) reduces to:
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Here, Z(jl jng) means we have a summation over all combinations of hg hidden
T

units out of h hidden units (so this summation will consist of (hho) terms). The
factor exp(JhZ) has disappeared because of the normalization.

Now the learning rules for the Many-Take-All network can be derived by
performing a gradient descent on the Kullback divergence K between the target
probability density ¢(x) and the network probability density p(x) by variating
the weights w;;. The complexity of the learning rule for this Boltzmann Machine
is by the introduction of lateral inhibition diminished from a 2” dependency to

a (hho) .

3 Annealing schedule and symmetry breaking

By applying gradient descent on the Kullback divergence one hopes to reach the
global minimum of K. Unfortunately, this learning rule often causes the network
to converge not to the global, but to a local minimum. To prevent this and as
discussed in Kappen, Nijman [3], an annealing schedule can be used, where 3
plays the role of inverse temperature. Here one starts with random weights at
a high temperature (small 3). Then repeatedly the network is trained until the
weights are converged and the temperature is lowered (or § is increased). The
procedure is repeated until the Kullback divergence on an independent test set
of patterns is at a minimum and starts to increase. Then the best modeling of
the data is achieved. A check on the test set in contrast to a check on the train
set 1s used to avoid overfitting on the training patterns. When the network is
trained in this way, local minima can be avoided effectively, as was shown for
ho =1in [2]

When 3 is increased, the weight vectors will shift, and thus specialize, from
the average of the big cluster to the average of a certain sub cluster. These shifts
do not occur smoothly, but there will be several symmetry breakings at critical
temperatures. This mechanism of symmetry breaking resembles the clustering
in statistical mechanics (see for instance Rose et al. in [7]) and is seen before in
the RBBM (Kappen, [2]). The critical § for the first symmetry breaking can be
calculated.

To do this calculation we will take the average of all patterns in the origin.
Thus w;; = 0 for small 3. At some 3 > 0 this solution gets unstable and we will



get the first phase transition. We expand the learning rule for small . Assuming
that the weights will stay small and that h > hg, we can derive to lowest order
in w;:

(I —2BhoCrz)w; =0 (3)

where Cpy 1s the covariance matrix of the training patterns. Thus the critical
temperature will be:
1
= 4
2Am ho )
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where A, is the largest eigenvalue of Cy;. This is in agreement with Rose et
al.[7] for hg = 1.

We see that the number of winners and the variance along the largest prin-
cipal axis of the training data, determine the value of §.. The more winners the
network has, the faster the first phase transition will occur.

4 Results

4.1 16 clusters in 4 dimensions

The properties of this Many-Take-All network can best be showed by demon-
strating an example: a data distribution in four dimensions. The data clusters
are placed on the angles of a four dimensional hypercube (so it consists of six-
teen clusters). A winner-Take-All network requires h = 16 and hg = 1. In this
dataset distances 0...4 between clusters can be distinguished. A minimal code
that contains these distances is h = 8 and hy = 4, which is smaller than the
Winner-Take-All. After learning, we see that the sparse representation correctly
gives the distance distribution between the corresponding data clusters. Further-
more, we observe that pairs of neurons encode cartesian axes in the data space.
For instance, neuron 1 and 5 always have opposite value and encode whether
the first coordinate of the particular cluster is 0 or 1 (see Table 1).

Cluster| s ||C1uster| s ||C1uster| s ||C1uster| s
1f.... 1111 5/..1.11.1 9]...1 111. 13]..11 11..
211... 111 6|1.1. .1.1 10]1..1 .11. 14(1.11 .1..
311111 7111 1.1 110.1.1 1.1. 151.111 1...
4111.. .11 8111, ...1 12(11.1 ..1. 16{1111 ...

Table 1. The encoding of a four dimensional cubic distribution by eight hidden
units with four winners.



4.2 Scaling of learning properties

The number of distances the network can distinguish with this coding, depends
on the number of neurons overlap and thus on the number of winners in the
network. In general, with hg winners and enough hidden units available, the
distances 0, ..., hg can be encoded. Unfortunately, the complexity of the learning
rule is roughly proportional to (hho) (h2°)nh (see eq (2)), so the more winners are
taken, the more time the learning will require (see Table 2).

dim|[Winner-Take-All Many-Take-All

hidden time (s)|hidden winners time (s)
1 2 1 2 1 1
2 4 2 4 2 )
3 8 6| 6 3 72
4] 16 371 8 4 947
5| 32 192 10 53 11511
6| 64 1292| 12 6 88855

Table 2. Comparison of learning times of Winner-Take-All and Many-Take-All

network for cubic distributions.

When more than one winner is introduced a new phenomenon occurs. Al-
though in principle the network can encode (hho) different clusters, in practice
some combinations are not used. This is because the neurons not only encode
the clusters but also encode information over the distances between the clusters.
This distance constraint makes it for instance impossible that in the first ex-
ample neurons will fire simultaneously. Although in small and low dimensional
problems the number of neurons for Many-Take-All are sometimes higher than
Winner-Take-All, in higher dimensions and larger numbers of hidden units, the
Many-Take-All becomes more efficient. To encode for example the cubic distri-
bution of clusters in a n-dimensional space, a Winner-Take-All network requires

2" units, while a Many-Take-All needs 2n (see Table 2).

4.3 Hierarchical data structures

We show here how Many-Take-All network can be used to learn structure in
hierarchical data sets. Ultrametric sets can be represented as the leafs of a tree,
where distance is defined as the number of nodes to a common parent [6]. Clearly,
ultrametric structure is not represented in the output coding of Winner-Take-All
networks, and Many-Take-All offers a clear advantage. As an example we take
an ultrametric data set, consisting of 8 clusters in 4 dimensions.

The results are shown in Table 3 (left) for a network with A = 6 and hg = 2.
After learning, the distances in the code display the same hierarchical structure



cluster|coding h = 6, hg = 2|coding h = 14, hqg = 3
1 110 000 1110 000 0000 000
2 110 000 1101 000 0000 000
3 101 000 1000 110 0000 000
4 101 000 1000 101 0000 000
5 000 110 0000 000 1110 000
6 000 110 0000 000 1101 000
7 000 101 0000 000 1000 110
8 000 101 0000 000 1000 101

Table 3. Coding of an ultrametric data set consisting of eight clusters in four
dimensions.

as the original data, although not in great detail, using h = 6,hg = 2 can
distinguish only four different clusters. This result is robust for changes in h and
ho. In Table 3 (right) shows the results on the same data for a network with
h = 14 and hy = 3. As can be seen, the fact that we have used a larger network
does not affect the basic distance structure of the coding that we obtained, but
adds more details. The network with h = 14, hg = 3 distinguishes all eight
clusters and their distances.
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