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Abstract

We compute the capacity of a binary neural network with dynamic depressing synapses to store
and retrieve an infinite number of patterns. We use a biologically motivated model of synaptic
depression and a standard mean-field approach. We find that at 1" = 0 the critical storage capacity
decreases with the degree of the depression. We confirm the validity of our main mean field results

with numerical simulations.
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I. INTRODUCTION

One of the interesting questions that arise in neural network modelling is how biological
processes in real neurons at the cellular and subcellular level influence the network behavior
and its ability to process information.

In most neural network studies sofar, the synaptic connection between neurons has been
modelled as a constant strength [1, 2|, possibly subject to learning on a slow time scale.
However, recently it has been reported that synaptic strength is a dynamic quantity that
strongly depends on the presynaptic neural activity [3, 4]. Synaptic strength can decrease
(depression) or increase (facilitation), depending on the type of synapse [3]. After learning,
most synapses are depressing with a typical time constant of 10-20 ms. The synaptic strength
recovers on the order of seconds. The molecular mechanism underlying this dynamics is the
depletion of neurotransmitter’s vesicles due to presynaptic neural firing and their restoration
on a larger time scale [4]. These synapses are found throughout the cortex as well as in the
hippocampus [5] [15].

There have been various studies of the effect of dynamic synapses on the information
transfer in feed-forward neural network behaviour, such as filtering of redundant noise [6],
extraction of temporal patterns for speech recognition [7] and robust coincidence detec-
tion [8].

Only few studies, for instance [9, 10], have focused on the role of dynamical synapses in
recurrent neural networks, and in particular on associative memory [1]. In such networks,
long-term storage of the memory patterns is produced by adjusting the strength of the
synapses according to the Hebb rule. With such static synapses the network dynamics has
fixed points (attractors) corresponding to the stored memory patterns [11]. The question
one may ask is how the retrieval properties and the fixed points of the Hopfield network
are affected by dynamical synapses. Recently, it has been shown numerically that synaptic
depression allows for fast switching among stored patterns by reducing the stability of such
attractors. These results are observed not only in networks of binary neurons, but also

of more biologically plausible integrate-and-fire neurons [10]. These numerical results were



confirmed analytically for binary neurons by a mean field analysis in the limit of a small
number of stored patterns: o = P/N — 0.

In this paper, we compute the storage capacity of an attractor neural network with
dynamical depressing synapses when we store an infinite number of patterns, P = a/N. In
the study presented in [9] the particular situation of strong depression and fast recovery
has been analyzed. However, it is known that a large variety of values for the depression
and recovery time constants are encountered in the brain. In this paper, we show that only
the ratio of these time constants affects the storage capacity and compute the dependence
of the storage capacity on this ratio. Our main conclusion, supported by both analytical
computations and Monte Carlo simulations is that the critical storage capacity for retrieval
of patterns as fixed points is strongly reduced by the degree of depression of the synapses,

even at temperature 7' = 0.

II. THE MODEL

Our starting point consists of a network of N binary neurons s; = 1,0. Each neuron

follows a probabilistic dynamics which is given by:
1
Prob{s;(t +1) =1} = 5[1 + tanh{20h;(t)}], (1)

where h; = 3=, wir;s; — 0; is the local field associated to neuron i, ¢; is the threshold for
neuron ¢ to fire and g = % represents the level of noise due to the stochastic synaptic
activity. The first term of h; is the total synaptic current arriving at neuron ¢ with w;
representing the static synaptic connection strength or weights between neurons j and ¢ and

x; the depression variable [10]. The static weights are defined according to the standard

covariance rule, that is:

o= N D&~ € - ) 2)

where £”’s (v = 1,..., P) are P memorized patterns that are stored in the network. The

depression variable x; depends on time and models the dynamic properties of the synapse [10]



and is a simplification of the original model by [4] in the limit of 7, = 0:

T’V‘BC

zi(t+1) = z;(t) + — Ux;(t)s;(t) Vi=1,...,N. (3)

For 7,.. = 0 we recover the static synapse (z; = 1).
In the following we shall consider random patterns with average activity (£/) = f = 1/2.
In order to recover the standard static Hopfield model with 8; = 0 in the {+1, —1} code, we

have to choose the neuron threshold in {1,0} code equal to

0:(¢) = QNf 722 E - NE =D, (4

For each stored pattern v, we define the average of x; for the active and inactive units in
the pattern, that is 2%, = Nf Y jeActv) Tj, and x¥ = N(l 7 > j¢Act(v) Tj- These sums extend
over the units that are active or inactive in the pattern v, respectively. In a similar way,
we define the mean activity of the network for the units which are active and inactive in
pattern v, that is m = Nf > jeAct(y) Sj and mZ

= N(1 7 ZjgAc(v) Sj- Then, the overlap of

the network activity with a stored pattern v becomes

1
m'= ——————— & — f)si=mi—m”, Vo, )
and the corresponding local fields
P
=D& = 1) ot —avm?]. (6)
v=1



III. MEAN-FIELD ANALYSIS

From equations (1) and (3) and within a standard mean-field approximation, the network

dynamics is driven by the coupled map

2+ 1) = o) + D g o)
B+ 1) = 2 (t) + ‘?’5(“ ~ U (Om (1),
mi(e1) = & 2 L o {3([st@mt ) - 2 (o 0]
£ S8 ) ALY (t)]) H , .
m’(t+1) = %g;ﬂ [1 — tanh {5 ([a:i(t)mi(t) — 2¥ (tym" (t)]

g

=D (28 = 1) [ ()mli () — x‘i(t)m’i(t)]) H ,
m'(t+1) = % 2(25;’—1) [1+tanh {5 o2 — 1) [2 (H)mly(t) — x’i(t)m’i(t)]H :

The last three equations of (7) are not independent and are related by Eq. (5). In the
thermodynamic limit (N — oo) the fixed point equations for the coupled dynamics of

neurons and synapses (7) is given as

Y 1
T+ ymi +1
Y 1
(L’ ==
- oym” +1
1 2
my = 3 1+ v > @ tanh{ 3 [:1:’;7715r — x’imi} + ) e [ahmh — x’im’i]) H (8)
i€ Act n#v
1 2
m = - |1— — Z(”) tanh } 3 [:pimi — a:'imq + Z(—ef) [xhml — 2 m!]
2| T N.&,
g Ac uFY
1
mY — ~ > e/ tanh{ 3 e [zhml — atm! ]
{ H

where v = 7,..U and €' = 2&" — 1.

The sum in the last equation of (8) can be seen as an average over the random patterns
(quenched disorder). We follow the standard approach of [2] (AGS) and assume that the
network has a macroscopic overlap with one pattern (condensed patterns) in the steady state

(v = 1), and the remaining P — 1 overlaps are O(\/—lﬁ) Then, it is straightforward to see
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that both m/, and m" are O(\/—lﬁ), and z/,, 2! =1 — O(ﬁ) for p # 1. Introducing new
overlap variables M* = afymk — z"m”, and using the previous reasoning we have that
MH ~ O(ﬁ) Vi # 1. In the thermodynamic limit M#* =~ m*Vu # 1, and the small order
parameters M* can be considered as independent random variables with mean zero and
variance ar/P where r = izwﬂ MH2,

To perform the average over the random patterns and obtain the final mean-field equa-
tions we followed the procedure described in [12]. This consists of splitting the sum ap-
pearing in the argument of the tanh in (8) in three parts (one for the condensed pattern
v = 1, one for the particular non-condensed pattern yu = v, and a third for the rest of the
non-condensed patterns), and performing a Taylor expansion of the tanh around the small
overlap M". After neglecting terms involving (M")?, we obtain

mY = L;l Z ¢/¢; tanh [ (Ml + > efe%M“)] (9)
-3 (1 - q u#l,v

for a non-condensed pattern v, with

= % Z tanh? {ﬂ zuj egM“} (10)

the spin-glass order parameter [2]. Then, we can compute r by evaluating the square of (9)

and obtaining the well known relation between r and ¢, that is:

q

T = . 11
T—31—oF "
Moreover, for the condensed pattern 1 we easily obtain
1
1 _
T+ 'yml+ +1
1 1
T_=—F——
ym_ + 1
1
m! = —Ztanh B M+ Ze”elM“
o L 2 s O g L0
my =3 + N > " tanh |3 +) €
1€Act n#l
1 2 - 1
m_ = = 1——2 tanhﬁM+Z .
2 NieAct n#l




"¢l is random and independent of M* and therefore z =

Taking into account that e
(1/v/ar) Y,z €'e; M* is a Gaussian noise with zero mean and variance 1, the average 1/N 3,
reduces to an average over the Gaussian noise z. Similarly, €/ is random and independent of
M*and 21 = (1/y/ar) ¥, ¢ M* and 2, = (1/\/ar) 3,41 (—€; ) M* are also Gaussian noises
with zero mean and variance 1. Then, the sums appearing in the steady-state conditions for

mk, Eq. (12), become averages over these Gaussian noises.

The resulting system of equations becomes:

dz 2 4u
= [ —Z_¢ /2 tanh WV
! /\/%e o [5<72(1—u2)+47+4+ am)}’

dz  _ 2/ 9 4u
1= | e anh [B (v?(l—u2>+4v+4+ﬁz>]’ )
B q
BTNy

where u = 2m! — 1. To obtain (13) we used the steady state conditions (12), and the fact
that in the steady-state the relation m} + m! = 1 holds. The system (13) is a direct
extension of the AGS equations in the standard Hopfield model 2] and reduces to the AGS

equations in the limit of v — 0, that is, in the case of non-depressed or static synapses.

IV. RESULTS

The system (13) must be solved numerically for finite temperature. In the limit of
T — 0 it is easy to compute the critical value of P/N, namely a., at which nontrivial
ferromagnetic solutions (Mattis states) appear. . gives the maximun number of patterns
that the system is able to retrieve. For 8 — o0, we use the standard approximations
i %e‘ZQ/Q(l —tanh® Blaz + b)) ~ \/gée_lﬁ/%2 and [ %e‘ZQ/z tanh Blaz +b]) ~ erf (ﬁ) :
Then, introducing a new variable y = f(u,~)/v2ar with f(u,) = m, the system
(13) reduces to
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One can easily check that v = 0 (y = 0) is a solution of (14) for all . The appearance of

y (\/ﬁ + %e—?f) = flerf(y), ). (14)

an additional non-zero solution indicates the presence of a stable ferromagnetic state. The

largest a at which these non-zero solution appears defines the critical storage capacity a.



at T = 0 as a function of the degree of synaptic depression . In Fig. 1 we plot the line
a.(7y) (solid line). The figure predicts a decrease of the critical storage capacity as the degree
of depression is increased. For v — 0 (non-depressed synapses), we recover the well know
critical storage capacity for static synapses, that is a. ~ 0.138. For v — oo our mean-field
theory predicts a, — 0.

To check the validity of the mean field results, we also performed a series of numerical
simulations for 7" = 0. We used the numerical protocol introduced in [13]. This consist of
simulating a number N, of retrieval experiments for each value of the loading parameter
a. For a particular a, each retrieval experiment has been performed with a different set of
random patterns and starting in a pattern (namely pattern 1) with its pixels disordered
with probability 0.1. At each time step, we updated in parallel all neurons according to
the rule s; = ©(h;) Vi, where O(x) is the step function, and the corresponding fraction of
synaptic resources z; according to (3). After 200 iterations, we recorded the final state of
the network and its overlap with pattern 1 for each particular retrieval experiment. Finally,
we averaged those overlaps over the N, retrieval experiments. For example, Fig. 2 shows
the final averaged overlap (m!) as a function of a for the particular value of v = 1 and four
different network sizes. Following [13], we assume that retrieval of the original pattern is not
effective when (m') < 0.75. This criterium gives the critical value of a for effective retrieval,
that is a.(7), and for a particular network size N. To obtain the value a.(y) for N — oo,
we fitted all a.(y) obtained for different network sizes to a straight line as a function of 1/N
and extrapolated to 1/N = 0 in Fig. 3. The resulting N — oo estimates for different values
of v are plotted on Fig. 1. For v = 0, we obtained o, = 0.146 £ 0.002 which is in agreement
with the estimate of a. reported in [2] and [13].

In general, we observe that the value of a.(y) obtained in numerical simulations is slightly
higher than the mean-field prediction. This discrepancy must be attributed to several factors:
the small network sizes used in our numerical studies; possible non-linear finite size scaling
effects at larger V; and the criterium we use to define a. () for the destabilization of memory
pattern. In addition, our mean field approach uses the replica symmetric ansatz, which is

well-known to underestimate the exact value of a, for static synapses [2].



V. CONCLUSION

We conclude, that depressing synapses have a negative effect on the storage capacity of
attractor neural networks. The effect is quite dramatic: the value of a.. is reduced by a factor
10 for v &~ 2. Since v is the ratio of recovery and depression time constants, this means
that the stored patterns can only be retrieved when recovery is fast compared to depression.
This is in sharp contrast with experimental findings where 7. is of the order of 1 sec and
U~ is of the order of miliseconds.

One must realize, that the classical definition of storage capacity as used in this paper
considers the asymptotic stability of memory patterns as fixed points of the dynamics. We
have shown previously [10] that attractor neural networks with dynamical synapses display in
addition to a ferro-magnetic phase an oscillatory phase, where the network activity switches
rapidly between stored memories. None of these memories are fixed points, but rather
meta-stable states. This behaviour is also observed at high memory loading. Therefore,
the disappearance of memories as fixed points does not imply the disappearance of memory
from these networks. The storage of memories as metastable states will require a different
definition of storage capacity. How such a new storage capacity depends on the dynamics

of the synapses is an open question.
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FIG. 1: Critical storage capacity a. vs 7 = 7...U in a neural network with depressing
synapses: mean-field result (solid line), numerical data points corresponding to the finite-

size scaling analysis of the Monte Carlo simulations (data points) (cf. Fig. 3 ).
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FIG. 2: Retrieval of a pattern in a neural network with depressing synapses at 17" = 0. The
figure shows the average overlap of the final state of the network with the starting pattern
as a function of the loading parameter a and for different network sizes. Here, we have
considered for illustrative purposes the particular situation for v = 1. The lines represent
the average overlap obtained in NN, = 150 retrieval experiments for each value of a. The

value (m') = 0.75, is used as a criterium to define a.
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FIG. 3: Finite-size scaling of the Monte Carlo simulations of a neural network with depressing
synapses for different values of the depressing factor v = 7,...U. The data points for each value
of 7 are the critical storage capacity found for different network sizes (N = 200, 400, 800
and 1600). The solid lines corresponds to the linear fitting of the data points. Extrapolation

of those lines to N — oo gives the data-points represented in Fig. 1.
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