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Abstract

Segmentation by synchrony of firing is inves-
tigated in stochastic neural networks with
binary neurons. The network is trained by
presenting sparsely coded patterns with a
Hebbian-type learning rule. Retrieval of
these patterns and synchrony of firing is in-
vestigated by presenting one or multiple pat-
terns simultaneously to the network. For
stimuli consisting of several superimposed
patterns the model correctly predicts a high
covariance of firing (indicating synchrony)
for neurons which are excited by the same
pattern in the stimulus. The model gives a
negative covariance for neurons, which are
stimulated by different patterns (indicating
absence of synchrony). To obtain useful co-
variance levels, noise levels should neither
be too large, since this would induce com-
plete random firing, nor be too small, since
this would minimize the chance to switch
between firing assemblies. Furthermore, the
strength of the multi-pattern input may nei-
ther be too large, as this would overrule
the memory function of the network, nor so
small that the desired firing assemblies are
never attained.

1 Introduction

In a series of experiments [8],[10] synchro-
nization of spike patterns of neurons in the
cortex was observed. In contrast to the tra-
ditional view, that emphasizes the use of fir-
ing rate as an information carrier in the cen-
tral nervous system, these results show that
temporal coding mechanisms should also be
taken into account. Recently, other studies
[6] have suggested that these results are bet-

ter understood as the result of fixed lateral
connectivity than as a mechanism for bind-
ing of local features for texture segregation.

Theoretical studies dealing with syn-
chronous firing mostly considered oscilla-
tor models or integrate-and-fire model neu-
rons [2],[3],[7]- In particular, Ritz et al. [7]
showed that for suitable delays, pattern seg-
mentation and collective oscillations could
be achieved with a spiking neuron model.
As an alternative for the integrate-and-fire
models Kappen [4] extended the traditional
mean firing rate analysis [1] of stochastic
neural networks (SNN) by applying linear
response theory to obtain a first-order ap-
proximation of the correlation between the
firing patterns of binary, stochastic neurons.
In this work this approach was used for
the analysis of long range correlation be-
tween neurons with short-range interactions
as a function of the coherence of the exter-
nal (sensory) input and the lateral coupling
strength.

In this paper we will analyse whether and
under which conditions the correlation of
the firing of stochastic neurons in a net-
work, which is trained with sparsely coded
patterns, can be used to segment external
stimuli which are a superposition of several
of these patterns.

2 Methods

2.1 Dynamics of the stochastic
neural network

We use binary stochastic neurons with
states s; € {0,1} and a probability of fir-
ing f(v;) which depends on the local field v;



and a noise parameter 3
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If N neurons are arranged in a network with
connection strengths w;;, thresholds 6; and
exogenous input signals h;, then the local
potential is

N
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j=1

The exogenous signal h; is a real number

which is linked to an external stimulus u; €

{0,1} by a stimulus gain g

hi = gu; (4)

The states of the neurons are updated se-
quentially following Eqs. 1 - 4.

The firing behaviour of the networks is
characterized by the mean firing m; = (s;)
and the covariance Cy; = (s;85) — (84)(s;)-
The firing statistics used in this paper are
the ensemble averages over 100 trials, each
of which is a time average over 200 com-
plete sequential update cycles. Each time
average is calculated starting from a station-
ary state, reached after an initial period of
50 update cycles. For example, estimated
mean firing is
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The initial state s*(0) of a trial follows from
Eq. 1 using the local fields v; = 6;. Since
the thresholds inhibit firing, s(0) — 0 for
low noise levels (8 — o0).

2.2 Choice of weights and
thresholds

Consider L sparse patterns with bits £ €
{0,1} chosen from a Bernoulli probabil-
ity distribution with mean a < 0.5. The
weights are chosen according to the covari-
ance learning rule

L
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which is a straightforward extension of the
Hebb rule to correct for the mean activ-
ity a. Tsodyks and Feigelman [9] showed

that for {0,1}-coding the storage capacity
diverges as a, ~ 1/(alna) for a | 0 which is
equal to the optimal storage capacity. This
statement was generalized by Vicente and
Amit [11] who adapted the coding scheme to
achieve optimal storage for general a. In this
work we will use the more natural {0,1}-
coding and adapt the thresholds.
The thresholds are chosen according to

N
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where the parameters b and ¢ have to be cho-
sen appropriately (see below). Using Eqgs. 5
and 6 to encode the weights and thresholds,
the local potential v; due to a state s = £¥
can be divided in a signal part S, which fa-
vors the present state £, and a noise part
R due to the storage of the other patterns.
The noise R due to all patterns except for
pattern v is
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Since the patterns are uncorrelated and
(€f —a) = 0, the noise term R has a zero
mean. Straightforward analysis shows that
for large N the variance of the noise is

(R*) = —a*(1 — a)*(a — 2ab + b?)

The noise is minimal if b = a, which gives

(R*) ~ —a®(1 - a)?

N
The signal S for large values of N is

S= (& —a)a(l—a)—c+h;

The global threshold parameter ¢ has to be
adjusted for a desired weighting between the
probability of attaining a positive potential
for a high bit p(v; > 0|¢/ = 1) and the prob-
ability of attaining a negative potential for a
low bit p(v; < 0|€/ = 0). If these probabil-
ities are weighted equally and when an ex-
ternal stimulus u; = &/ is present, ¢ should
be chosen

c=a®—1.5a> 4+ 0.5a + 0.5¢g

This choice implies equal expected signal
amplitudes |S| for both ¥ =0 and &} =

S| =a(l—a)/2+g/2



The noise R is unaffected by the stimulus.
Therefore, the signal-to-noise-ratio (SNR)
can be adjusted at will by changing g. How-
ever, the memory function of the network
and correlated firing between neurons are
lost for large stimulus gains, since the ef-
fect of the external stimulus now overrules
the contributions of neurons in the network.
In this paper we use the gain

g =gca(l —a)

with g. a gain coefficient. If g. = 1 the
contribution of all other neurons equals the
contribution by the external stimulus.

The calculations presented in this paper
refer to a network with NV = 100 neurons
and L = 10 patterns. All patterns consist of
10 high bits, 90 low bits and have an overlap
of 1 high bit with each other pattern, such
that (&) = a = 0.1, ({z’.‘gf}’) = 0.01 and all
higher order correlations are zero.

2.3 Mean field analysis

If the SNN with dynamics specified by Egs.
1-3 and weights specified by Eq. 5 has
reached equilibrium, the probability distri-
bution p(s) of the states of the SNN is given
by the Boltzmann distribution:

ps) = exp(—BE(s)
Z = Y exp(~BE(s))
{s}
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where Z is the partition function over all
possible states, and E(s) is the energy asso-
ciated with state s.

Since exact calculation of the partition
function is often not computationally fea-
sible, one has to resort to approximations
of the probability distribution. In this pa-
per we use the mean field (MF) formalism
[5]. It assumes a decoupled probability dis-
tribution and optimizes the mean fields of
the decoupled model such that the free en-
ergy of the decoupled model best approxi-
mates the free energy of the original uncou-
pled distribution. The MF equation for a
{0, 1}-neuron is

N
m; = f(z wijm; + 6; + h;) (7)
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with m; = (s;). Under the mean field for-
malism an estimate of the covariance can
be obtained by the linear response theorem,
which states that

1 0m;
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Differentiation of the MF equations leads to
8
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This paper uses a first-order approximation
of the covariance matrix which avoids the
matrix inversion

Pwimi(1 —my)m;(1 —m;) i #j

3 Results

3.1 Single-pattern stimulus

As a first step towards the analysis of the
segmentation of a multi-pattern stimulus,
the neural activity in the network with ex-
ternal input by one pattern u = ¢! is consid-
ered. Figure 1 shows characteristics of the
firing behaviour as a function of the noise
parameter 3 for different groups of neurons.
First we consider the simulated Glauber dy-
namics (solid lines). For high noise levels
(small 3) the mean firing m of all neurons
tends to 0.5. For smaller noise levels the
mean firing of all non-stimulated neurons
rapidly decreases to zero and the mean fir-
ing of the externally stimulated neurons in-
creases. The peak in the covariance C, in-
dicates that the stimulated neurons have an
increased probability to fire synchronously.

The dashed lines in Fig. 1 indicate the so-
lutions of the mean field (MF) equations for
the same stimulus. The mean firing rates m
and variances o are in reasonable agreement
with the simulation results. The covariance
levels C are underestimated, but the shapes
of the graphs are similar.

Using the MF approximation, the effect of
gain and noise variation on the firing statis-
tics is depicted in Fig. 2. For small stimulus
gains no enhanced firing rate is attained and
a sharp transition exists for gains which in-
duce a high mean firing rate. Highest covari-
ance levels are attained for medium noise
levels (8 = 50) and gains near the transi-
tion point.
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Figure 1: Mean firing m (upper row), variance o> (middle row) and covariance C (bottom
row) as function of the noise parameter 3 for an external stimulus u = &' and a stimulus gain
ge = 0.2. Left column: neurons i excited in pattern &' (¢} = 1). Middle column: £ =1 for
u # 1. Right column: &' =0 for all p. Solid lines: simulation results of the Glauber dynamics.

Dashed lines: solution of the MF analysis.

3.2 Multi-pattern stimulus

The statistics of the converged Glauber
dynamics for a stimulus consisting of two
patterns are depicted in Fig. 3. For a range
of noise levels the neurons with £ = 1in one
of the two patterns (but not in both) exhibit
a mean firing of about a half. Further, in
the middle of this range there exists a large
positive covariance between neurons in one
pattern and a clear negative covariance be-
tween neurons in the two different patterns.
This signifies that for these noise levels the
neurons in one pattern have a high probabil-
ity to fire synchronously, while the neurons
in two patterns mostly fire asynchronously.

In contrast to the MF solutions of single-
pattern stimuli no reasonable results could
be obtained with the MF analysis for multi-
pattern stimuli.

Simulation results of the Glauber dynam-
ics similar to those shown in Fig. 3 can easily
be obtained for stimuli consisting of the su-
perposition of three or more patterns. An
insightful example is shown for a 3-pattern
stimulus in Fig. 4. It is clear that binding
of neurons in one encoded pattern and seg-

mentation of neurons in different encoded
patterns is achieved using the appropriate
noise levels and stimulus gain. It is worth
mentioning that the network can respond in
two ways. Most of the time, one pattern
dominates such that only neurons, which are
encoded in that pattern, are firing in syn-
chrony (such as in the time interval 10-40 in
Fig. 4). Occasionally, multiple patterns are
represented simultaneously (like in the time
interval around 60 in Fig. 4). On average,
the covariance between the firing of neurons
in different patterns is negative.

4 Discussion

The stochastic neural network (SNN) with
an external stimulus is an extension of the
traditional autoassociative SNN. The exter-
nal stimulus offers a good mechanism to
change the state of the network. It was
shown in this paper that for suitable noise
levels an external stimulus induces a sub-
maximum average firing rate and facilitates
segmentation of a stimulus by analysis of the
correlation of the firing events. In particu-
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Figure 2: Mean firing m., variance o, and covariance C, of stimulated neurons and mean firing
m, of non-stimulated neurons as function of the noise parameter 3 and stimulus gain g..

lar, a positive covariance between the neu-
rons in one pattern and a negative covari-
ance between neurons with /' = 1 for differ-
ent patterns p was found. Noise is required
in the SNN with external stimulus such that
the network can jump into and between fir-
ing assemblies. To attain useful covariance
levels the stimulus gain should neither be
too large, since this would override the mem-
ory function of the network, nor too small,
since this would minimize the probability to
attain the desired firing assembly.

A reasonable correspondence between the
MF analysis and the simulation of the
Glauber dynamics could be attained for
stimuli with one pattern. Often poor re-
sults were attained in the mean field approx-
imation for stimuli with multiple patterns.
This indicates a violation of the assump-
tions which underlie the MF approxima-
tion. More powerful approximation meth-
ods therefore seem to be required to effi-
ciently calculate the statistics of the dynam-
ics of the firing behaviour in these cases.
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Figure 3: Mean firing m (upper row), variance o2 (middle row) and covariance C (bottom row)
as a function of the noise parameter B for simulations of the Glauber dynamics. The external
stimulus is the logical "or” of two patterns u = €' V 2. The stimulus gain is g. = 0.2. First
column: neurons i, which are excited in pattern &' but not in pattern £ (£} =1 and & = 0)
(first column). Second column: & =0 and £ = 1. Third column: & = & = 1. Fourth column:

g=g=o
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Figure 4: Spike diagram of the SNN with a stimulus consisting of three superimposed patterns.
The upper three panels show the action potentials for the ten neurons with £} =1, & =1, and
& =1 (panels 1 to 3, respectively). The bottom panel shows the action potentials for neurons

with &' =0 for p € {1,2,3}.



