Speedy Q-L earning

Mohammad Gheshlaghi Azar Remi Munos
Radboud University Nijmegen INRIA Lille, SequeL Project
Geert Grooteplein 21N, 6525 EZ 40 avenue Halley
Nijmegen, Netherlands 59650 Villeneuve d’Ascq, France
m azar @ci ence. ru. nl r.munos@nria.fr
Mohammad Ghavamzadeh Hilbert J. Kappen
INRIA Lille, SequeL Project Radboud University Nijmegen
40 avenue Halley Geert Grooteplein 21N, 6525 EZ
59650 Villeneuve d’Ascq, France Nijmegen, Netherlands
m ghavanzadeh@nria. fr b. kappen@ci ence. ru. nl
Abstract

We introduce a new convergent variant of Q-learning, cadiegedy Q-learning,
in order to address the problem of slow convergence in thredata form of the
Q-learning algorithm. We prove a PAC bound on the perforrmaiSQL, which
shows that onlyl” = O(log(1/6)e2(1 — v)~*) steps are required for the SQL
algorithm to converge to atroptimal action-value function with high probability.
This bound has a better dependencyl gaand1/(1 —~), and thus, is tighter than
the best available results for Q-learning. Our bound is silgeerior to the existing
results for both model-free and model-based instancestohla-value iteration
that are considered to be more sample-efficient than thermental methods like
Q-learning.

1 Introduction

Q-learning [15] is a well-known model-free reinforcemeeatning (RL) algorithm that finds an
estimate of the optimal action-value function. Q-learrisng combination of dynamic programming,
more specifically the value iteration algorithm, and staticaapproximation. In finite state-action
problems, it has been shown that Q-learning converges togtimal action-value function [3, 7].
However, it suffers from slow convergence, especially wiendiscount factot is close to one [5,
13]. The main reason for the slow convergence of Q-learrsiigsd combination of the sample-based
stochastic approximation (that makes use of a decayingilearate) and the fact that the Bellman
operator propagates information throughout the wholeesgsmecially wheny is close tol).

In this paper, we focus on RL problems that are formulatedréi® fstate-action discounted infinite
horizon Markov decision processes (MDPs), and proposegoritdm, calledspeedy Q-learning
(SQL), that addresses the problem of slow convergence eb@iing. At each time step, SQL uses
two successive estimates of the action-value functionrtiates its space complexity twice as the
standard Q-learning. However, this allows SQL to use a mggeesssive learning rate for one of
the terms in its update rule and eventually achieves a fastarergence rate than the standard Q-
learning (see Section 3.1 for a more detailed discussior)pie a PAC bound on the performance
of SQL, which shows that only’ = O((l — 7)‘46—2) number of samples are required for SQL in
order to guarantee anoptimal action-value function with high probability. Ehis superior to the
best result for the standard Q-learning by [5], both in teafns/e and1/(1 — v). The rate for SQL

is even better than that for thithased Q-learninglgorithm, a model-free batch Q-value iteration

algorithm proposed and analyzed by [8]. In addition, SQBEteris slightly better than the rate
of the model-based batch Q-value iteration algorithm ing84 has a better memory requirement
(space complexity), see Section 3.3.2 for more detailedpasisons. Similar to Q-learning, SQL
may be implemented in synchronous and asynchronous fashior the sake of simplicity in the
analysis, we only report and analyze its synchronous veigsithis paper. However, it may easily
be implemented in an asynchronous fashion (similar to theerfamiliar instance of Q-learning)
and our theoretical results may also be extended to thisgdty following the same path as [5].

The idea of using previous estimates of the action-valueshraady been used in order to improve
the performance of Q-learning. A popular algorithm of thisckis Q(\) [10, 15], which incorpo-
rates the concept of eligibility traces in Q-learning, aad been empirically shown to have a better
performance than Q-learning, i.e.,@(for suitable values oA. Another recent work in this di-
rection isDouble Q-learning14], which uses two estimators for the action-value fumriin order

to alleviate the over-estimation of action-values in Quhr@g. This over-estimation is caused by a
positive bias introduced by using the maximum action vakiaraapproximation for the maximum
expected action value [14].

The rest of the paper is organized as follows. After intradgdhe notations used in the paper
in Section 2, we present o@peedy Q-learninglgorithm in Section 3. We first describe the al-
gorithm in Section 3.1, then state our main theoreticalltesa., a high-probability bound on the
performance of SQL, in Section 3.2, and finally compare owmldowith the previous results on
Q-learning in Section 3.3. Section 4 contains the detaitedfpof the performance bound of the
SQL algorithm. Finally, we conclude the paper and discussesiuture directions in Section 5.

2 Preliminaries

In this section, we introduce some concepts and definitiom® fthe theory of Markov decision
processes (MDPs) and stochastic processes that are usedtibut the paper. We start by the
definition of supremum norm. For a real-valued functipn Y — R, whereY is a finite set, the

supremum norm of is defined agg|| £ max,cy |g(y)|.

We consider the standard reinforcement learning (RL) fraonk [3, 12] in which a learning agent
interacts with a stochastic environment and this inteoads modeled as a discrete-time discounted
MDP. A discounted MDP is a quintuplg(, A, P, R,~), whereX and A are the set of states and
actions,P is the state transition distributiof® is the reward function, angl € (0, 1) is a discount
factor. We denote by (:|z,a) andr(z,a) the probability distribution over the next state and the
immediate reward of taking actianat stater, respectively. To keep the representation succinct, we
useZ for the joint state-action spacé x A.

Assumption 1 (MDP Regularity) We assum& andA are finite sets with cardinalitiel§(| and|.A|,
respectively. We also assume that the immediate rewdrds:) are uniformly bounded by,

and definé/nax £ Riax /(1 — 7).

A stationary Markov policyr(-|z) is the distribution over the control actions given the cotre
statex. It is deterministic if this distribution concentrates owesingle action. Thealueand the
action-value function®f a policy =, denoted respectively by”™ : X — R andQ™ : Z — R,
are defined as the expected sum of discounted rewards thanaoeintered when the policy
is executed. Given a MDP, the goal is to find a policy that asigdhe best possible values,
V*(x) £ sup, V™(x), Yr € X. FunctionV* is called theoptimal value function Similarly
the optimal action-value functiois defined a€)*(x, a) = sup, Q™ (z,a), ¥(x,a) € Z. The opti-
mal action-value functio®)* is the unique fixed-point of thBellman optimality operato? defined
as(TQ)(z,a) £ r(z,a) +79 2 ex Pylz, a) maxpea Q(y,b), V(z,a) € Z. Itis important to note
thatJ is a contraction with factos, i.e., for any pair of action-value functiordg and@’, we have
17Q — TQ'|| < v||Q — Q'] [2, Chap. 1]. Finally for the sake of readability, we define thax
operatoM over action-value functions &3Q)(z) = max,c4 Q(z,a), Yz € X.

3 Speedy Q-Learning

In this section, we introduce our RL algorithm, called spe@dLearning (SQL), derive a perfor-
mance bound for this algorithm, and compare this bound vintiilar results on standard Q-learning.
The derived performance bound shows that SQL has a rate ee@ence of ordeO(,/1/T),
which is better than all the existing results for Q-learning

3.1 Speedy Q-Learning Algorithm

The pseudo-code of the SQL algorithm is shown in AlgorithmAs it can be seen, this is the
synchronous version of the algorithm, which will be anatyaethe paper. Similar to the standard
Q-learning, SQL may be implemented either synchronousasgnchronously. In the asynchronous
version, at each time step, the action-value of the obsextedd-action pair is updated, while the rest
of the state-action pairs remain unchanged. For the coexeggof this instance of the algorithm, it
is required that all the states and actions are visited tefinmany times, which makes the analysis
slightly more complicated. On the other hand, given a geiveranodel, the algorithm may be also
formulated in a synchronous fashion, in which we first geteeganext statg ~ P(-|z, a) for each
state-action paifz, a), and then update the action-values of all the state-actns pising these
samples. We chose to include only the synchronous versi&Qafin the paper just for the sake of
simplicity in the analysis. However, the algorithm can bglemented in an asynchronous fashion
(similar to the more familiar instance of Q-learning) and theoretical results may also be extended
to the asynchronous case using the machinery introducesl by [

Algorithm 1: Synchronous Speedy Q-Learning (SQL)
Input: Initial action-value functior®,, discount factory, and number of iteratiofd’

Q-1 := Qo;
for k:=0,1,2,3,...., T —1do
1 .
Ok = g1
for each(z,a) € Z do
Generate the next state sample~ P(-|z, a);
TkQr—1(z,a) = r(x,a) + YMQr—1(ys);
TeQr(z, a) :==r(z,a) + YMQr(yr);
Qrt1(w,a) := Qr(x,a)+ ok (ThQr-1(z,a) — Qi (z,a)) +(1—ar) (ThQk(z,a) =Tk Qr-1(z, a));
end

end
return Qr

As it can be seen from Algorithm 1, at each time stepSQL keeps track of the action-value
functions of the two time-stegsandk — 1, and its main update rule is of the following form:

Qit1(z,a) = Qp(x, a) + a (TuQr-1(x,a) — Qr(z,a)) + (1 — ay) (TeQr (2, a) = T Qr—1(, azgi

whereT,Q(z,a) = r(z,a) + YMQ(yx) is the empirical Bellman optimality operator for the sam-
pled next statgy, ~ P(-|z,a). At each time stef: and for state-action pait, a), SQL works as
follows: (i) it generates a next statg by drawing a sample fron®(-|z, a), (ii) it calculates two
sample estimate®, Q. —1 (z, a) andT, Qx (x, a) of the Bellman optimality operator (for state-action
pair (x, a) using the next statg,) applied to the estimat&g,_; and@,, of the action-value function
at the previous and current time steps, and fin@ily it updates the action-value function @f, a),
generate€),+1(x, a), using the update rule of Eq. 1. Moreover, we dgt decays linearly with
time, i.e.,ar = 1/(k 4+ 1), in the SQL algorithm. The update rule of Eq. 1 may be rewnrittethe
following more compact form:

Qrt1(r,a) = (1 — o) Qr(x,a) + ar D [Qr, Qr—1](z, a), (2)

whereDy [Qr, Qr—1](x,a) = kT Qx(z,a) — (k — 1)T,Qr_1(, a). This compact form will come
specifically handy in the analysis of the algorithm in Setdo

Let us consider the update rule of Q-learning

Qi+1(w,a) = Qr(x,a) + ar (TeQr(z, a) — Qr(x, a)),

which may be rewritten as

Qir1(z,a) = Qr(w,a) + o (TeQr-1(2, a) — Qi (z, a)) + ar (ThQr(, a) = ThQr—1(z,a)). (3)

Comparing the Q-learning update rule of Eqg. 3 with the oneSIQL in Eq. 1, we first notice that
the same termsI, Qr_1 — Qr andT, Q. — T Q1 appear on the RHS of the update rules of both
algorithms. However, while Q-learning uses the same ceatiee learning ratey; for both these
terms, SQL useg, for the first term and a bigger learning step- ay, = k/(k + 1) for the second
one. Since the terf,Qx — T Qr_1 goes to zero ag, approaches its optimal valug*, it is not
necessary that its learning rate approaches zero. As a,nesinlg the learning rate;, which goes

to zero withk, is too conservative for this term. This might be a reason &y that uses a more
aggressive learning rale— «y, for this term has a faster convergence rate than Q-learning.

3.2 Main Theoretical Result

The main theoretical result of the paper is expressed ashagni@pability bound over the perfor-
mance of the SQL algorithm.

Theorem 1. Let Assumption 1 holds aril be a positive integer. Then, at iteratidhof SQL with
probability at leastl — ¢, we have

2|3CHA|

Vinax | ¥ 2log
Q* QTH—l . Tt T

We report the proof of Theorem 1 in Section 4. This result, loimad with Borel-Cantelli lemma [6],
guarantees th&), converges almost surely §* with the rate,/1/T. Further, the following result
which quantifies the number of stepsrequired to reach the errer> 0 in estimating the optimal
action-value function, w.pl — ¢, is an immediate consequence of Theorem 1.

Coroallary 1 (Finite-Time PAC Performance Bound for SQUYnder Assumption 1, for any> 0,
after

DC
21 e

steps of SQL, the uniform approximation erf@d* — Q.|| < ¢, with probability at least — 4.

3.3 Relation to Existing Results

In this section, we first compare our results for SQL with tkisting results on the convergence of
standard Q-learning. This comparison indicates that S@klecates the convergence of Q-learning,
especially fory close tol and smalk. We then compare SQL with batch Q-value iteration (Ql) in
terms of sample and computational complexities, i.e., tihmabrer of samples and the computational
cost required to achieve anoptimal solution w.p.1 — 4, as well as space complexity, i.e., the
memory required at each step of the algorithm.

3.3.1 A Comparison with the Convergence Rate of Standard Q-Learning

There are not many studies in the literature concerning dhgargence rate of incremental model-
free RL algorithms such as Q-learning. [13] has providedasymptotic convergence rate for Q-
learning under the assumption that all the states have the sext state distribution. This result
shows that the asymptotic convergence rate of Q-learnitiglimear learning step scales exponen-
tially with 1 — ~

The finite time behavior of Q-learning have been throughlyestigated in [5] for different
time scales. Their main result indicates that by using thrnponial learning stepy, =
1/ (k+1)“, 0.5 < w < 1, Q-learning achieves-optimal performance w.p. at least— § after

only
2 |x||A|Rmax _1
T=0 i G 4o ((Fma)T @)
(1-~)e Ly BT —)e !

gl

steps. When = 1, one can argue thay (1 —) becomes the dominant term in the bound of Eq. 4,
and thus, the optimized bound w.ctis obtained fors = 4/5 and is of ordelO ((1 —) %e~2%).

On the other hand, SQL is guaranteed to achieve the samsipreii onlyO ((1 —~)*¢2) steps.
The difference between these two bounds is significant'foclose tol.

3.3.2 SQL vs. Q-Valuelteration

Finite sample bounds for both model-based and model-freasgt Q-learning) QI have been de-
rived [8]. These algorithms can be considered as the batioveof Q-learning. They show that
to quantify e-optimal action-value functions w.p. — 4, we only needO (log(1/¢)(log(1/8) +
loglog(1/€))/€*) andO((log(1/6) + loglog(1/¢))/€*) samples in model-free and model-based
QI, respectively. A comparison between their results aedthin result of this paper suggests that
the sample complexity of SQL, which is proportional@oé 10g(1/6)/e2), is better than model-free
QI. Although the sample complexities of SQL and model-ba@édre almost at the same order,
SQL has a better space complexity than model-based QI: S@dsnenly2|X||.A| memory space,
while the space complexity of model-based QI varies betwé&@| log(|X||A|) + |X||A| and
|X]2|A| + |X||.A|, depending on the sparsity of the learned state transitiatnix{8]. Finally, the
bounds indicate a better computational complexity for Sntboth model-free and model-based
QI. Table 1 summarizes the comparisons between SQL and firegednd model-based QI methods
discussed in this section.

Table 1: Comparison between SQL and model-based and medetF-value iteration in terms of
the order of sample complexity (SC), computational comiptg}CC), and space complexity (SPC).

Method SQL Model-Based QI Model-Free QI
sc |20]|A] log LEUAL ||| 4| (log 5L5E +log log 1) ||| A log L (log AL +10glog 1)
(1—v)%e? (1—7y)te (1—7)%e?
cC ||| A log PAL X[A]log L (log 1AL +loglog L) |X||A]log L (log 1AL +10glog 1)
a7 =) =)
X||A|(log ‘XJA‘ +loglog%
SPC 114 AR08 =5 Hoglos) X4
(1—7y)%e
4 Analysis

In this section, we give some intuition about the convergesfcSQL and provide the full proof of
the finite-time analysis reported in Theorem 1. We start lrp@tucing some notations.

Let ¥ be the filtration generated by the sequence of all random leanip;, yo, ..., yx} drawn
from the distributionP(-|z, a), for all state action(z, a) up to roundk. We define the operator
D[Qk, Qr—1] as the expected value of the empirical opergrconditioned ordFy, _;:

D[Qk, Qr—1)(x,a) £ E(Di[Qr, Qx—1](x, a) [Fr—1)
- k‘IQk(xa a) - (k - 1)TQk—1(I7 a)'
Thus the update rule of SQL writes
Qrt1(z,a) = (1 — ag)Qr(z,a) + ag (D[Qk, Qr-1](z,a) — ex(x,a)), %)

where the estimation errey, is defined as the difference between the oper@{o},, Q1] and its
sample estimat®; [Q, Q1] for all (z, a) € Z:

ex(z,a) £ DQk, Qr—1](z,a) — Di[Qk, Qr—1](z, a).

We have the property th&t[e (x, a)|F;—1] = 0 which means that for allz, a) € Z the sequence
of estimation errof e (z, a), ea(z, a), ..., ex(z,a)} is a martingale difference sequence w.r.t. the

filtration F. Let us define the martingalg, (z, a) to be the sum of the estimation errors:

k

Ey(r,a) £ Zej(x,a), Y(z,a) € Z. (6)

Jj=0

The proof of Theorem 1 follows the following stefgr Lemma 1 shows the stability of the algorithm
(i.e., the sequence @, stays bounded)ii) Lemma 2 states the key property that the SQL iterate
Qr+1 is very close to the Bellman operatdrapplied to the previous iterat@; plus an estimation
error term of orde®y, /k. (iii) By induction, Lemma 3 provides a performance boljaii — Q||

in terms of a discounted sum of the cumulative estimatioors{E;},—o.,—1. Finally (iv) we
use a maximal Azuma'’s inequality (stated in Lemma 4) to bofipdand deduce the finite time
performance for SQL.

For simplicity of the notations, we remove the dependencéwon) (e.g., writing@ for Q(z, a),
Ej, for Ex(z,a)) when there is no possible confusion.

Lemma 1 (Stability of SQL) Let Assumption 1 hold and assume that the initial actioru@dlinc-
tion Qo = @ _1 is uniformly bounded b¥/,., then we have, for alt > 0,

||Qk|| S VmaX7 HekH S 2‘/maxa and H'Dk[kaQk—l}H S Vmax-

Proof. We first prove thal| Dy [Qr, Qr—1]|| < Vimax DY induction. Fork = 0 we have:
||®0[Q07Q—1]” S ||T|| + ’YHMQ—IH S Rmax + ’yVmax - Vmax-
Now for anyk > 0, let us assume that the bouff® [Qx, Qx_1]|| < Vinax holds. Thus
[Dr+1[Qr+1, Qrlll < 7l + v [[(E + 1)MQpy1 — EMQy|
k 1
=l o+ 000 (@ ey Pue Q]) — RO
< |Ir|l + 7 |M(kQk + D [Qr, Qr—1] — kQr)||
S H7|| +’Y HDk[kaQkfl} ‘ S Rmax + ’yvmax - Vmax~
and by induction, we deduce that for &l>> 0, || D [Qk, Qk—1]|| < Vinax-

Now the bound ory, follows from||ex|| = ||E(D[Qk, Qr—1]|Fk-1) — Di[Qk, Qr-1]ll < 2Vinax,
and the bound Q|| < Vinax is deduced by noticing thad;, = 1/k Z?;& D,[Q, Q1] O

The next Lemma shows th@Y; is close taJ Qx—_1, up to aO(1/k) term plus the average cumulative
estimation errog. Ej,_;.

Lemma 2. Under Assumption 1, for any > 1:
1
Qr = T (TQo + (k= 1)TQr—1 — Ex—1) . (7)

Proof. We prove this result by induction. The result holds fo& 1, where (7) reduces to (5). We
now show that if the property (7) holds férthen it also holds fok + 1. Assume that (7) holds for
k. Then, from (5) we have:

k 1
Qrt1 = A 1Qk t 2 n 1(7€7Qk — (k= 1)TQr—1 — €x)
k 1 1
RS (k(TQO + (k= 1)TQk-1 - Ekl)) + m(kTQk —(k=1)TQk—1 — ex)
1
= m(mo +HRTQk — By —) = & " -(TQo + KTQx — Ey).
Thus (7) holds fok + 1, and is thus true for alt > 1. O

Now we bound the difference betweé)t and @, in terms of the discounted sum of cumulative
estimation error§ Fy, 1, ..., Er_1}.

Lemma 3 (Error Propagation of SQL)Let Assumption 1 hold and assume that the initial action-
value function)y = Q_ is uniformly bounded b¥/},.«, then for allk > 1, we have

k
Q7 - Qul < 2+ %Z B, ©®

Proof. Again we prove this lemma by induction. The result holdsifet 1 as:

1QF = @il = [ITQ" — ToQol| = [|TQ" — TQo + ol
< |ITQ™ = TQol| + lleol| < 2vVimax + [leol| <

2’7Vmax
2]

We now show that if the bound holds fbythen it also holds fok + 1. Thus, assume that (8) holds
for k. By using Lemma 2:

Q" = Quirll = HQ* — 1(7620 + kTQy — By
Hk+1 Q" TQ0) + T ("~ TQu) + o
< 1 10 = Qoll + 1 197 - Qul + g 1]
< Vet T | S }Ci FNE | + g 1B
k+1
=R = D LR
Thus (8) holds fo + 1 thus for allk > 1 by induction. O

Now, based on Lemmas 3 and 1, we prove the main Theorem ofaperp

Proof of Theorem 1. We begin our analysis by recalling the result of Lemma 3 ahddl:

Q" — Qrll < _(Vima ZWT k”Ek -

Note that the difference between this bound and the resmheﬁrem 1is justin the second term.
So, we only need to show that the following inequality holdih probability at leasi — §:

T 2|DC||A|
1 _ 2Vinax [2log
7o B < T o ©)
k=1
We first notice that:
1 & 1 &
= T—k <« = T—k s
727 NBea € 7 300 s 1Bkl < gy s, 1Bl (10

Therefore, in order to prove (9) it is sufficient to bounthax;<ip<r [|[Er—1] =
max (g q)ez Maxi<k<7 |Er—1(x,a)| in high probability. We start by providing a high probalyilit
bound formax;<x<7 |Ek—1(x, a)| for a given(z, a). First notice that

P (s 1Bics)] >) = P (x| s (Bics(o,00), s (- B a(o,0)] >

=P ({1r<nka<x (Ep_1(z,a)) > e} U {121ka§T(—Ekl(x,a>) > e})

< IP’(max (Ey_1(z,a)) > e) —l—]P’(max (—Ep_1(z,a)) > €],
1<k<T 1<k<T
11)

and each term is now bounded by using a maximal Azuma-Haogf&linequality, reminded now
(see e.g., [4]).

Lemma 4 (Maximal Hoeffding-Azuma’s Inequality) Let V = {V;,V5,...,Vr} be a mar-
tingale difference sequence w.rt. a sequence of randonmblas {X;, Xo,..., X7} (i.e,
E(Vit1]|X1,...Xg) = 0forall 0 < k < T) such thatV is uniformly bounded by, > 0. If

we defineS;, = Y%, V;, then for anye > 0, we have

—e2
< — .
P <1I§nka§XT Sk > e) < exp (2TL2>

As mentioned earlier, the sequence of random varialle$z, a),ei(x,a), - ,ex(x,a)} is

a martingale difference sequence w.r.t. the filtrat@p (generated by the random samples
{Y0,y1,---,yk(z,a) for all (z,a)), i.e., Elex(x,a)|Fr-1] = 0. It follows from Lemma 4 that
for anye > 0 we have:

_e2
<
P (11§nka§XT(Ek_1(sc, a)) > e) < exp (8TV2)

max

e
_ < -
P <1r<nka<xT(Ey_1(z,a)) > e) < exp (8TV2) .

max

(12)

By combining (12) with (11) we deduce thBi{maxi<i<7 |Ex—1(z,a)|] > €) < 2exp (ﬁ) ,
and by a union bound over the state-action space, we dedaice th

. < 8TVZ '
P <1I<nka<XT e 6) < 21X[M exp (8TVH21ax> o

This bound can be rewritten as: for ahy- 0,

P (max |[Ex—1] < Vinax\/ 8T log 2|DC||A|) >1-9, (14)
1<k<T 1)

which by using (10) proves (9) and Theorem 1. O

5 Conclusions and Future Work

In this paper, we introduced a new Q-learning algorithmiedaspeedy Q-learning (SQL). We ana-
lyzed the finite time behavior of this algorithm as well asaisymptotic convergence to the optimal
action-value function. Our result is in the form of high pability bound on the performance loss
of SQL, which suggests that the algorithm converges to thienapaction-value function in a faster
rate than the standard Q-learning. Overall, SQL is a singdfeient and theoretically well-funded
reinforcement learning algorithm, which improves santpsed dynamic programming algorithms
such as Q-learning and model-based value iteration.

In this work, we are only interested in the estimation of throal action-value function and not the
problem of exploration. Therefore, we did not compare osultdo the PAC-MDP methods [11], in
which the choice of the exploration policy impacts the bétaof the learning algorithm. However,
we believe that it would be possible to gain w.r.t. the stdtthe art in PAC-MDPs, by combining
the asynchronous version of SQL with a smart exploraticstedyy. This is mainly due to the fact
that the bound for SQL has been proved to be tighter than thal&trithms that have been used
for estimating the value function in PAC-MDP methods. Wesider this as a subject for future
research.

Another possible direction for future work is to scale up SQlarge (possibly continuous) state and
action spaces where function approximation is needed. Wa/behat it would be possible to extend
our current SQL analysis to the continuous case along the gath as in the fitted value iteration
analysis by [9] and [1]. This would require extending theoepropagation result of Lemma 3 to a
£s-norm analysis and combining it with the standard regresisaunds.

References

[1] A. Antos, R. Munos, and Cs. Szepé@sv Fitted g-iteration in continuous action-space mdps. |
Proceedings of the 21st Annual Conference on Neural Infaomédrocessing Systen2007.

[2] D. P. BertsekasDynamic Programming and Optimal Controalolume Il. Athena Scientific,
Belmount, Massachusetts, third edition, 2007.

[3] D. P.Bertsekas and J. N. Tsitsiklideuro-Dynamic Programming\thena Scientific, Belmont,
Massachusetts, 1996.

[4] N. Cesa-Bianchi and G. LugosiPrediction, Learning, and GamesCambridge University
Press, New York, NY, USA, 2006.

[5] Eyal Even-Dar and Yishay Mansour. Learning rates foegrhing.Journal of Machine Learn-
ing Research5:1-25, 2003.

[6] William Feller. An Introduction to Probability Theory and Its Applicatign®lume 1. Wiley,
January 1968.

[7] T. Jaakkola, M. I. Jordan, and S. Singh. On the convergefcstochastic iterative dynamic
programming.Neural Computation6(6):1185-1201, 1994.

[8] Michael Kearns and Satinder Singh. Finite-sample cayemece rates for g-learning and indi-
rect algorithms. IrAdvances in Neural Information Processing Systemgages 996—-1002.
MIT Press, 1999.

[9] R. Munos and Cs. Szepeav. Finite-time bounds for fitted value iteratiatournal of Machine
Learning Research):815-857, 2008.

[10] Jing Peng and Ronald J. Williams. Incremental muktpst-learning. Machine Learning
22(1-3):283-290, 1996.

[11] Alexander L. Strehl, Lihong Li, and Michael L. LittmanReinforcement learning in finite
mdps: Pac analysidournal of Machine Learning ResearctD:2413-2444, 2009.

[12] R. S. Sutton and A. G. BartoReinforcement Learning: An IntroductioMIT Press, Cam-
bridge, Massachusetts, 1998.

[13] Csaba Szepeévi. The asymptotic convergence-rate of g-learning.Attvances in Neural
Information Processing Systems 10, Denver, Colorado, US%y, 1997.

[14] Hado van Hasselt. Double g-learning. In J. LaffertyKCl. Williams, J. Shawe-Taylor, R.S.
Zemel, and A. Culotta, editorédvances in Neural Information Processing Systempages
2613-2621, 2010.

[15] C. Watkins.Learning from Delayed RewardBhD thesis, Kings College, Cambridge, England,
1989.

