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Abstract

We introduce a new convergent variant of Q-learning, calledspeedy Q-learning,
in order to address the problem of slow convergence in the standard form of the
Q-learning algorithm. We prove a PAC bound on the performance of SQL, which
shows that onlyT = O

(

log(1/δ)ǫ−2(1 − γ)−4
)

steps are required for the SQL
algorithm to converge to anǫ-optimal action-value function with high probability.
This bound has a better dependency on1/ǫ and1/(1−γ), and thus, is tighter than
the best available results for Q-learning. Our bound is alsosuperior to the existing
results for both model-free and model-based instances of batch Q-value iteration
that are considered to be more sample-efficient than the incremental methods like
Q-learning.

1 Introduction

Q-learning [15] is a well-known model-free reinforcement learning (RL) algorithm that finds an
estimate of the optimal action-value function. Q-learningis a combination of dynamic programming,
more specifically the value iteration algorithm, and stochastic approximation. In finite state-action
problems, it has been shown that Q-learning converges to theoptimal action-value function [3, 7].
However, it suffers from slow convergence, especially whenthe discount factorγ is close to one [5,
13]. The main reason for the slow convergence of Q-learning is the combination of the sample-based
stochastic approximation (that makes use of a decaying learning rate) and the fact that the Bellman
operator propagates information throughout the whole space (specially whenγ is close to1).

In this paper, we focus on RL problems that are formulated as finite state-action discounted infinite
horizon Markov decision processes (MDPs), and propose an algorithm, calledspeedy Q-learning
(SQL), that addresses the problem of slow convergence of Q-learning. At each time step, SQL uses
two successive estimates of the action-value function thatmakes its space complexity twice as the
standard Q-learning. However, this allows SQL to use a more aggressive learning rate for one of
the terms in its update rule and eventually achieves a fasterconvergence rate than the standard Q-
learning (see Section 3.1 for a more detailed discussion). We prove a PAC bound on the performance
of SQL, which shows that onlyT = O

(

(1− γ)−4ǫ−2
)

number of samples are required for SQL in
order to guarantee anǫ-optimal action-value function with high probability. This is superior to the
best result for the standard Q-learning by [5], both in termsof 1/ǫ and1/(1− γ). The rate for SQL
is even better than that for thePhased Q-learningalgorithm, a model-free batch Q-value iteration
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algorithm proposed and analyzed by [8]. In addition, SQL’s rate is slightly better than the rate
of the model-based batch Q-value iteration algorithm in [8]and has a better memory requirement
(space complexity), see Section 3.3.2 for more detailed comparisons. Similar to Q-learning, SQL
may be implemented in synchronous and asynchronous fashions. For the sake of simplicity in the
analysis, we only report and analyze its synchronous version in this paper. However, it may easily
be implemented in an asynchronous fashion (similar to the more familiar instance of Q-learning)
and our theoretical results may also be extended to this setting by following the same path as [5].

The idea of using previous estimates of the action-values has already been used in order to improve
the performance of Q-learning. A popular algorithm of this kind is Q(λ) [10, 15], which incorpo-
rates the concept of eligibility traces in Q-learning, and has been empirically shown to have a better
performance than Q-learning, i.e., Q(0), for suitable values ofλ. Another recent work in this di-
rection isDouble Q-learning[14], which uses two estimators for the action-value function in order
to alleviate the over-estimation of action-values in Q-learning. This over-estimation is caused by a
positive bias introduced by using the maximum action value as an approximation for the maximum
expected action value [14].

The rest of the paper is organized as follows. After introducing the notations used in the paper
in Section 2, we present ourSpeedy Q-learningalgorithm in Section 3. We first describe the al-
gorithm in Section 3.1, then state our main theoretical result, i.e., a high-probability bound on the
performance of SQL, in Section 3.2, and finally compare our bound with the previous results on
Q-learning in Section 3.3. Section 4 contains the detailed proof of the performance bound of the
SQL algorithm. Finally, we conclude the paper and discuss some future directions in Section 5.

2 Preliminaries

In this section, we introduce some concepts and definitions from the theory of Markov decision
processes (MDPs) and stochastic processes that are used throughout the paper. We start by the
definition of supremum norm. For a real-valued functiong : Y 7→ R, whereY is a finite set, the
supremum norm ofg is defined as‖g‖ , maxy∈Y |g(y)|.

We consider the standard reinforcement learning (RL) framework [3, 12] in which a learning agent
interacts with a stochastic environment and this interaction is modeled as a discrete-time discounted
MDP. A discounted MDP is a quintuple(X,A, P,R, γ), whereX andA are the set of states and
actions,P is the state transition distribution,R is the reward function, andγ ∈ (0, 1) is a discount
factor. We denote byP (·|x, a) andr(x, a) the probability distribution over the next state and the
immediate reward of taking actiona at statex, respectively. To keep the representation succinct, we
useZ for the joint state-action spaceX×A.

Assumption 1 (MDP Regularity). We assumeX andA are finite sets with cardinalities|X| and|A|,
respectively. We also assume that the immediate rewardsr(x, a) are uniformly bounded byRmax

and defineVmax , Rmax

/

(1− γ).

A stationary Markov policyπ(·|x) is the distribution over the control actions given the current
statex. It is deterministic if this distribution concentrates over a single action. Thevalueand the
action-value functionsof a policy π, denoted respectively byV π : X 7→ R andQπ : Z 7→ R,
are defined as the expected sum of discounted rewards that areencountered when the policyπ
is executed. Given a MDP, the goal is to find a policy that attains the best possible values,
V ∗(x) , supπ V

π(x), ∀x ∈ X. FunctionV ∗ is called theoptimal value function. Similarly
theoptimal action-value functionis defined asQ∗(x, a) = supπ Q

π(x, a), ∀(x, a) ∈ Z. The opti-
mal action-value functionQ∗ is the unique fixed-point of theBellman optimality operatorT defined
as(TQ)(x, a) , r(x, a) + γ

∑

y∈X
P (y|x, a)maxb∈A Q(y, b), ∀(x, a) ∈ Z. It is important to note

thatT is a contraction with factorγ, i.e., for any pair of action-value functionsQ andQ′, we have
‖TQ− TQ′‖ ≤ γ ‖Q−Q′‖ [2, Chap. 1]. Finally for the sake of readability, we define the max
operatorM over action-value functions as(MQ)(x) = maxa∈A Q(x, a), ∀x ∈ X.
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3 Speedy Q-Learning

In this section, we introduce our RL algorithm, called speedy Q-Learning (SQL), derive a perfor-
mance bound for this algorithm, and compare this bound with similar results on standard Q-learning.
The derived performance bound shows that SQL has a rate of convergence of orderO(

√

1/T ),
which is better than all the existing results for Q-learning.

3.1 Speedy Q-Learning Algorithm

The pseudo-code of the SQL algorithm is shown in Algorithm 1.As it can be seen, this is the
synchronous version of the algorithm, which will be analyzed in the paper. Similar to the standard
Q-learning, SQL may be implemented either synchronously orasynchronously. In the asynchronous
version, at each time step, the action-value of the observedstate-action pair is updated, while the rest
of the state-action pairs remain unchanged. For the convergence of this instance of the algorithm, it
is required that all the states and actions are visited infinitely many times, which makes the analysis
slightly more complicated. On the other hand, given a generative model, the algorithm may be also
formulated in a synchronous fashion, in which we first generate a next statey ∼ P (·|x, a) for each
state-action pair(x, a), and then update the action-values of all the state-action pairs using these
samples. We chose to include only the synchronous version ofSQL in the paper just for the sake of
simplicity in the analysis. However, the algorithm can be implemented in an asynchronous fashion
(similar to the more familiar instance of Q-learning) and our theoretical results may also be extended
to the asynchronous case using the machinery introduced by [5].

Algorithm 1: Synchronous Speedy Q-Learning (SQL)
Input: Initial action-value functionQ0, discount factorγ, and number of iterationT
Q−1 := Q0;
for k := 0, 1, 2, 3, . . . , T − 1 do

αk := 1
k+1 ;

for each(x, a) ∈ Z do
Generate the next state sampleyk ∼ P (·|x, a);
TkQk−1(x, a) := r(x, a) + γMQk−1(yk);
TkQk(x, a) := r(x, a) + γMQk(yk);
Qk+1(x, a) := Qk(x, a)+αk

(

TkQk−1(x, a)−Qk(x, a)
)

+(1−αk)
(

TkQk(x, a)−TkQk−1(x, a)
)

;
end

end
return QT

As it can be seen from Algorithm 1, at each time stepk, SQL keeps track of the action-value
functions of the two time-stepsk andk − 1, and its main update rule is of the following form:

Qk+1(x, a) = Qk(x, a)+αk

(

TkQk−1(x, a)−Qk(x, a)
)

+(1−αk)
(

TkQk(x, a)−TkQk−1(x, a)
)

,
(1)

whereTkQ(x, a) = r(x, a) + γMQ(yk) is the empirical Bellman optimality operator for the sam-
pled next stateyk ∼ P (·|x, a). At each time stepk and for state-action pair(x, a), SQL works as
follows: (i) it generates a next stateyk by drawing a sample fromP (·|x, a), (ii) it calculates two
sample estimatesTkQk−1(x, a) andTkQk(x, a) of the Bellman optimality operator (for state-action
pair(x, a) using the next stateyk) applied to the estimatesQk−1 andQk of the action-value function
at the previous and current time steps, and finally(iii) it updates the action-value function of(x, a),
generatesQk+1(x, a), using the update rule of Eq. 1. Moreover, we letαk decays linearly with
time, i.e.,αk = 1/(k + 1), in the SQL algorithm. The update rule of Eq. 1 may be rewritten in the
following more compact form:

Qk+1(x, a) = (1− αk)Qk(x, a) + αkDk[Qk, Qk−1](x, a), (2)

whereDk[Qk, Qk−1](x, a) , kTkQk(x, a)− (k− 1)TkQk−1(x, a). This compact form will come
specifically handy in the analysis of the algorithm in Section 4.

Let us consider the update rule of Q-learning

Qk+1(x, a) = Qk(x, a) + αk

(

TkQk(x, a)−Qk(x, a)
)

,
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which may be rewritten as

Qk+1(x, a) = Qk(x, a)+αk

(

TkQk−1(x, a)−Qk(x, a)
)

+αk

(

TkQk(x, a)−TkQk−1(x, a)
)

. (3)

Comparing the Q-learning update rule of Eq. 3 with the one forSQL in Eq. 1, we first notice that
the same terms:TkQk−1 −Qk andTkQk − TkQk−1 appear on the RHS of the update rules of both
algorithms. However, while Q-learning uses the same conservative learning rateαk for both these
terms, SQL usesαk for the first term and a bigger learning step1− αk = k/(k + 1) for the second
one. Since the termTkQk − TkQk−1 goes to zero asQk approaches its optimal valueQ∗, it is not
necessary that its learning rate approaches zero. As a result, using the learning rateαk, which goes
to zero withk, is too conservative for this term. This might be a reason whySQL that uses a more
aggressive learning rate1− αk for this term has a faster convergence rate than Q-learning.

3.2 Main Theoretical Result

The main theoretical result of the paper is expressed as a high-probability bound over the perfor-
mance of the SQL algorithm.

Theorem 1. Let Assumption 1 holds andT be a positive integer. Then, at iterationT of SQL with
probability at least1− δ, we have

‖Q∗ −QT ‖ ≤
2Vmax

1− γ





γ

T
+

√

2 log 2|X||A|
δ

T



 .

We report the proof of Theorem 1 in Section 4. This result, combined with Borel-Cantelli lemma [6],
guarantees thatQT converges almost surely toQ∗ with the rate

√

1/T . Further, the following result
which quantifies the number of stepsT required to reach the errorǫ > 0 in estimating the optimal
action-value function, w.p.1− δ, is an immediate consequence of Theorem 1.

Corollary 1 (Finite-Time PAC Performance Bound for SQL). Under Assumption 1, for anyǫ > 0,
after

T ≥
12R2

max log
2|X||A|

δ

(1− γ)4ǫ2

steps of SQL, the uniform approximation error‖Q∗ −QT ‖ ≤ ǫ, with probability at least1− δ.

3.3 Relation to Existing Results

In this section, we first compare our results for SQL with the existing results on the convergence of
standard Q-learning. This comparison indicates that SQL accelerates the convergence of Q-learning,
especially forγ close to1 and smallǫ. We then compare SQL with batch Q-value iteration (QI) in
terms of sample and computational complexities, i.e., the number of samples and the computational
cost required to achieve anǫ-optimal solution w.p.1 − δ, as well as space complexity, i.e., the
memory required at each step of the algorithm.

3.3.1 A Comparison with the Convergence Rate of Standard Q-Learning

There are not many studies in the literature concerning the convergence rate of incremental model-
free RL algorithms such as Q-learning. [13] has provided theasymptotic convergence rate for Q-
learning under the assumption that all the states have the same next state distribution. This result
shows that the asymptotic convergence rate of Q-learning with linear learning step scales exponen-
tially with 1− γ.

The finite time behavior of Q-learning have been throughly investigated in [5] for different
time scales. Their main result indicates that by using the polynomial learning stepαk =
1
/

(k + 1)
ω
, 0.5 < ω < 1, Q-learning achievesǫ-optimal performance w.p. at least1 − δ after

only

T = O











R2
max log

(

|X||A|Rmax

δ(1−γ)ǫ

)

(1− γ)4ǫ2





1
w

+

[

1

1− γ
log

(

Rmax

(1− γ)ǫ

)]
1

1−ω






, (4)
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steps. Whenγ ≈ 1, one can argue that1/ (1− γ) becomes the dominant term in the bound of Eq. 4,
and thus, the optimized bound w.r.t.ω is obtained forω = 4/5 and is of orderÕ

(

(1− γ)−5ǫ−2.5
)

.
On the other hand, SQL is guaranteed to achieve the same precision in onlyO

(

(1−γ)−4ǫ−2
)

steps.
The difference between these two bounds is significant forγ’s close to1.

3.3.2 SQL vs. Q-Value Iteration

Finite sample bounds for both model-based and model-free (Phased Q-learning) QI have been de-
rived [8]. These algorithms can be considered as the batch version of Q-learning. They show that
to quantify ǫ-optimal action-value functions w.p.1 − δ, we only needO

(

log(1
/

ǫ)
(

log(1
/

δ) +

log log(1
/

ǫ)
)

/ǫ2
)

andO
(

(log(1
/

δ) + log log(1
/

ǫ))/ǫ2
)

samples in model-free and model-based
QI, respectively. A comparison between their results and the main result of this paper suggests that
the sample complexity of SQL, which is proportional toO

(

log(1
/

δ)/ǫ2
)

, is better than model-free
QI. Although the sample complexities of SQL and model-basedQI are almost at the same order,
SQL has a better space complexity than model-based QI: SQL needs only2|X||A| memory space,
while the space complexity of model-based QI varies between|X||A| log(|X||A|) + |X||A| and
|X|2|A| + |X||A|, depending on the sparsity of the learned state transition matrix [8]. Finally, the
bounds indicate a better computational complexity for SQL than both model-free and model-based
QI. Table 1 summarizes the comparisons between SQL and model-free and model-based QI methods
discussed in this section.

Table 1: Comparison between SQL and model-based and model-free Q-value iteration in terms of
the order of sample complexity (SC), computational complexity (CC), and space complexity (SPC).

Method SQL Model-Based QI Model-Free QI

SC |X||A| log
|X||A|

δ

(1−γ)4ǫ2
|X||A|(log

|X||A|
(1−γ)δ

+log log 1
ǫ
)

(1−γ)4ǫ2
|X||A| log 1

ǫ
(log

|X|A|
(1−γ)δ

+log log 1
ǫ
)

(1−γ)5ǫ2

CC |X||A| log
|X||A|

δ

(1−γ)4ǫ2
|X||A| log 1

ǫ
(log

|X||A|
(1−γ)δ

+log log 1
ǫ
)

(1−γ)5ǫ2
|X||A| log 1

ǫ
(log

|X|A|
(1−γ)δ

+log log 1
ǫ
)

(1−γ)5ǫ2

SPC |X||A|
|X||A|(log

|X||A|
(1−γ)δ

+log log 1
ǫ
)

(1−γ)4ǫ2 |X||A|

4 Analysis

In this section, we give some intuition about the convergence of SQL and provide the full proof of
the finite-time analysis reported in Theorem 1. We start by introducing some notations.

Let Fk be the filtration generated by the sequence of all random samples {y1, y2, . . . , yk} drawn
from the distributionP (·|x, a), for all state action(x, a) up to roundk. We define the operator
D[Qk, Qk−1] as the expected value of the empirical operatorDk conditioned onFk−1:

D[Qk, Qk−1](x, a) , E(Dk[Qk, Qk−1](x, a) |Fk−1 )

= kTQk(x, a)− (k − 1)TQk−1(x, a).

Thus the update rule of SQL writes

Qk+1(x, a) = (1− αk)Qk(x, a) + αk (D[Qk, Qk−1](x, a)− ǫk(x, a)) , (5)

where the estimation errorǫk is defined as the difference between the operatorD[Qk, Qk−1] and its
sample estimateDk[Qk, Qk−1] for all (x, a) ∈ Z:

ǫk(x, a) , D[Qk, Qk−1](x, a)−Dk[Qk, Qk−1](x, a).

We have the property thatE[ǫk(x, a)|Fk−1] = 0 which means that for all(x, a) ∈ Z the sequence
of estimation error{ǫ1(x, a), ǫ2(x, a), . . . , ǫk(x, a)} is a martingale difference sequence w.r.t. the
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filtrationFk. Let us define the martingaleEk(x, a) to be the sum of the estimation errors:

Ek(x, a) ,

k
∑

j=0

ǫj(x, a), ∀(x, a) ∈ Z. (6)

The proof of Theorem 1 follows the following steps:(i) Lemma 1 shows the stability of the algorithm
(i.e., the sequence ofQk stays bounded).(ii) Lemma 2 states the key property that the SQL iterate
Qk+1 is very close to the Bellman operatorT applied to the previous iterateQk plus an estimation
error term of orderEk/k. (iii) By induction, Lemma 3 provides a performance bound‖Q∗ − Qk‖
in terms of a discounted sum of the cumulative estimation errors {Ej}j=0:k−1. Finally (iv) we
use a maximal Azuma’s inequality (stated in Lemma 4) to boundEk and deduce the finite time
performance for SQL.

For simplicity of the notations, we remove the dependence on(x, a) (e.g., writingQ for Q(x, a),
Ek for Ek(x, a)) when there is no possible confusion.

Lemma 1 (Stability of SQL). Let Assumption 1 hold and assume that the initial action-value func-
tionQ0 = Q−1 is uniformly bounded byVmax, then we have, for allk ≥ 0,

‖Qk‖ ≤ Vmax, ‖ǫk‖ ≤ 2Vmax, and ‖Dk[Qk, Qk−1]‖ ≤ Vmax.

Proof. We first prove that‖Dk[Qk, Qk−1]‖ ≤ Vmax by induction. Fork = 0 we have:

‖D0[Q0, Q−1]‖ ≤ ‖r‖ + γ‖MQ−1‖ ≤ Rmax + γVmax = Vmax.

Now for anyk ≥ 0, let us assume that the bound‖Dk[Qk, Qk−1]‖ ≤ Vmax holds. Thus

‖Dk+1[Qk+1, Qk]‖ ≤ ‖r‖ + γ ‖(k + 1)MQk+1 − kMQk‖

= ‖r‖ + γ

∥

∥

∥

∥

(k + 1)M

(

k

k + 1
Qk +

1

k + 1
Dk[Qk, Qk−1]

)

− kMQk

∥

∥

∥

∥

≤ ‖r‖ + γ ‖M(kQk +Dk[Qk, Qk−1]− kQk)‖

≤ ‖r‖ + γ ‖Dk[Qk, Qk−1]‖ ≤ Rmax + γVmax = Vmax.

and by induction, we deduce that for allk ≥ 0, ‖Dk[Qk, Qk−1]‖ ≤ Vmax.

Now the bound onǫk follows from‖ǫk‖ = ‖E(Dk[Qk, Qk−1]|Fk−1)−Dk[Qk, Qk−1]‖ ≤ 2Vmax,
and the bound‖Qk‖ ≤ Vmax is deduced by noticing thatQk = 1/k

∑k−1
j=0 Dj [Qj , Qj−1].

The next Lemma shows thatQk is close toTQk−1, up to aO(1/k) term plus the average cumulative
estimation error1

k
Ek−1.

Lemma 2. Under Assumption 1, for anyk ≥ 1:

Qk =
1

k
(TQ0 + (k − 1)TQk−1 − Ek−1) . (7)

Proof. We prove this result by induction. The result holds fork = 1, where (7) reduces to (5). We
now show that if the property (7) holds fork then it also holds fork + 1. Assume that (7) holds for
k. Then, from (5) we have:

Qk+1 =
k

k + 1
Qk +

1

k + 1
(kTQk − (k − 1)TQk−1 − ǫk)

=
k

k + 1

(

1

k
(TQ0 + (k − 1)TQk−1 − Ek−1)

)

+
1

k + 1
(kTQk − (k − 1)TQk−1 − ǫk)

=
1

k + 1
(TQ0 + kTQk − Ek−1 − ǫk) =

1

k + 1
(TQ0 + kTQk − Ek).

Thus (7) holds fork + 1, and is thus true for allk ≥ 1.

Now we bound the difference betweenQ∗ andQk in terms of the discounted sum of cumulative
estimation errors{E0, E1, . . . , Ek−1}.
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Lemma 3 (Error Propagation of SQL). Let Assumption 1 hold and assume that the initial action-
value functionQ0 = Q−1 is uniformly bounded byVmax, then for allk ≥ 1, we have

‖Q∗ −Qk‖ ≤
2γVmax

(1− γ)k
+

1

k

k
∑

j=1

γk−j ‖Ej−1‖. (8)

Proof. Again we prove this lemma by induction. The result holds fork = 1 as:

‖Q∗ −Q1‖ = ‖TQ∗ − T0Q0‖ = ||TQ∗ − TQ0 + ǫ0||

≤ ||TQ∗ − TQ0||+ ||ǫ0|| ≤ 2γVmax + ||ǫ0|| ≤
2γVmax

1− γ
+ ‖E0‖

We now show that if the bound holds fork, then it also holds fork + 1. Thus, assume that (8) holds
for k. By using Lemma 2:

∥

∥Q∗ −Qk+1

∥

∥ =

∥

∥

∥

∥

Q∗ −
1

k + 1
(TQ0 + kTQk − Ek)

∥

∥

∥

∥

=

∥

∥

∥

∥

1

k + 1
(TQ∗ − TQ0) +

k

k + 1
(TQ∗ − TQk) +

1

k + 1
Ek

∥

∥

∥

∥

≤
γ

k + 1
‖Q∗ −Q0‖ +

kγ

k + 1
‖Q∗ −Qk‖ +

1

k + 1
‖Ek‖

≤
2γ

k + 1
Vmax +

kγ

k + 1





2γVmax

k(1− γ)
+

1

k

k
∑

j=1

γk−j ‖Ej−1‖



+
1

k + 1
‖Ek‖

=
2γVmax

(1− γ)(k + 1)
+

1

k + 1

k+1
∑

j=1

γk+1−j ‖Ej−1‖.

Thus (8) holds fork + 1 thus for allk ≥ 1 by induction.

Now, based on Lemmas 3 and 1, we prove the main Theorem of this paper.

Proof of Theorem 1. We begin our analysis by recalling the result of Lemma 3 at roundT :

‖Q∗ −QT ‖ ≤
2γVmax

(1− γ)T
+

1

T

T
∑

k=1

γT−k ‖Ek−1‖.

Note that the difference between this bound and the result ofTheorem 1 is just in the second term.
So, we only need to show that the following inequality holds,with probability at least1− δ:

1

T

T
∑

k=1

γT−k ‖Ek−1‖ ≤
2Vmax

1− γ

√

2 log 2|X||A|
δ

T
. (9)

We first notice that:

1

T

T
∑

k=1

γT−k ‖Ek−1‖ ≤
1

T

T
∑

k=1

γT−k max
1≤k≤T

‖Ek−1‖ ≤
1

T (1− γ)
max

1≤k≤T
‖Ek−1‖. (10)

Therefore, in order to prove (9) it is sufficient to boundmax1≤k≤T ‖Ek−1‖ =
max(x,a)∈Z max1≤k≤T |Ek−1(x, a)| in high probability. We start by providing a high probability
bound formax1≤k≤T |Ek−1(x, a)| for a given(x, a). First notice that

P

(

max
1≤k≤T

|Ek−1(x, a)| > ǫ

)

= P

(

max

[

max
1≤k≤T

(Ek−1(x, a)), max
1≤k≤T

(−Ek−1(x, a))

]

> ǫ

)

= P

({

max
1≤k≤T

(Ek−1(x, a)) > ǫ

}

⋃

{

max
1≤k≤T

(−Ek−1(x, a)) > ǫ

})

≤ P

(

max
1≤k≤T

(Ek−1(x, a)) > ǫ

)

+ P

(

max
1≤k≤T

(−Ek−1(x, a)) > ǫ

)

,

(11)
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and each term is now bounded by using a maximal Azuma-Hoeffding’s inequality, reminded now
(see e.g., [4]).

Lemma 4 (Maximal Hoeffding-Azuma’s Inequality). Let V = {V1, V2, . . . , VT } be a mar-
tingale difference sequence w.r.t. a sequence of random variables {X1, X2, . . . , XT } (i.e.,
E(Vk+1|X1, . . . Xk) = 0 for all 0 < k ≤ T ) such thatV is uniformly bounded byL > 0. If
we defineSk =

∑k
i=1 Vi, then for anyǫ > 0, we have

P

(

max
1≤k≤T

Sk > ǫ

)

≤ exp

(

−ǫ2

2TL2

)

.

As mentioned earlier, the sequence of random variables{ǫ0(x, a), ǫ1(x, a), · · · , ǫk(x, a)} is
a martingale difference sequence w.r.t. the filtrationFk (generated by the random samples
{y0, y1, . . . , yk}(x, a) for all (x, a)), i.e., E[ǫk(x, a)|Fk−1] = 0. It follows from Lemma 4 that
for anyǫ > 0 we have:

P

(

max
1≤k≤T

(Ek−1(x, a)) > ǫ

)

≤ exp

(

−ǫ2

8TV 2
max

)

P

(

max
1≤k≤T

(−Ek−1(x, a)) > ǫ

)

≤ exp

(

−ǫ2

8TV 2
max

)

.

(12)

By combining (12) with (11) we deduce thatP (max1≤k≤T |Ek−1(x, a)| > ǫ) ≤ 2 exp
(

−ǫ2

8TV 2
max

)

,

and by a union bound over the state-action space, we deduce that

P

(

max
1≤k≤T

‖Ek−1‖ > ǫ

)

≤ 2|X||A| exp

(

−ǫ2

8TV 2
max

)

. (13)

This bound can be rewritten as: for anyδ > 0,

P

(

max
1≤k≤T

‖Ek−1‖ ≤ Vmax

√

8T log
2|X||A|

δ

)

≥ 1− δ, (14)

which by using (10) proves (9) and Theorem 1.

5 Conclusions and Future Work

In this paper, we introduced a new Q-learning algorithm, called speedy Q-learning (SQL). We ana-
lyzed the finite time behavior of this algorithm as well as itsasymptotic convergence to the optimal
action-value function. Our result is in the form of high probability bound on the performance loss
of SQL, which suggests that the algorithm converges to the optimal action-value function in a faster
rate than the standard Q-learning. Overall, SQL is a simple,efficient and theoretically well-funded
reinforcement learning algorithm, which improves sample-based dynamic programming algorithms
such as Q-learning and model-based value iteration.

In this work, we are only interested in the estimation of the optimal action-value function and not the
problem of exploration. Therefore, we did not compare our result to the PAC-MDP methods [11], in
which the choice of the exploration policy impacts the behavior of the learning algorithm. However,
we believe that it would be possible to gain w.r.t. the state of the art in PAC-MDPs, by combining
the asynchronous version of SQL with a smart exploration strategy. This is mainly due to the fact
that the bound for SQL has been proved to be tighter than the RLalgorithms that have been used
for estimating the value function in PAC-MDP methods. We consider this as a subject for future
research.

Another possible direction for future work is to scale up SQLto large (possibly continuous) state and
action spaces where function approximation is needed. We believe that it would be possible to extend
our current SQL analysis to the continuous case along the same path as in the fitted value iteration
analysis by [9] and [1]. This would require extending the error propagation result of Lemma 3 to a
ℓ2-norm analysis and combining it with the standard regression bounds.
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