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Abstract
Recent experimental findings show that the efficacy of transmission in cortical
synapses depends on presynaptic activity. In most neural models, however, the
synapses are regarded as static entities where this dependence is not included.
We study the role of activity-dependent (dynamic) synapses in neuronal
responses to temporal patterns of afferent activity. Our results demonstrate
that, for suitably chosen threshold values, dynamic synapses are capable of
coincidence detection (CD) over a much larger range of frequencies than static
synapses. The phenomenon appears to be valid for an integrate-and-fire as well
as a Hodgkin–Huxley neuron and various types of CD tasks.

1. Introduction

Recent experimental studies of cortical cells show that the postsynaptic potential is a dynamical
quantity which depends on the presynaptic activity [1, 2, 5–8]. After transmission of an
action potential (AP) the synapse needs to recover before it restores to its original strength.
Thus, the amplitude of the postsynaptic response tends to decrease with increasing input
frequency of presynaptic spike trains. The behaviour is known as short-term depression and
phenomenologically is well explained by the dynamic model of synapses introduced in [1].
In contrast, the standard (static) model of synapses does not display such a complex synaptic
behaviour. The postsynaptic responses have constant strength which is insensitive to the input
frequency. The fact that synaptic strength is a function of neural activity greatly affects our
traditional view of neural processing such as recurrent excitation, cell assemblies and memory
as attractors.

To explore the possible role of the activity-dependent synapses in neuronal transmission
properties, we analyse the responses of a postsynaptic neuron to temporal structures of the
afferent activity. Motivation for this analysis arises from the observation that in a variety of
sensory systems, there is physiological evidence indicating that precise temporal correlations
among groups of neurons appear to encode different stimulus features [9–11] or may be
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an important factor for some mechanisms of selective attention [12]. In addition, it is also
established that synchronous increase in the firing rates or correlated bursting activity might be
relevant signal carriers in some behavioural situations [9]. Thus, detection of the synchronized
firing patterns such as coincident spike trains, synchronous rate changes or correlated bursts
seems to be an important neuronal mechanism and as suggested in [3, 4, 16] a physiologically
plausible operation mode of cortical neurons.

The capability of the neuron with static synapses to perform a coincidence detection (CD)
has been thoroughly studied in [17, 19, 21]. In [17] it is shown that the CD properties are
influenced by the parameters of the neuron model and by the number of synapses and their
mean activity. In particular, these authors show that there is a threshold value that maximizes
the CD abilities and they discuss potential adaptive mechanisms that can control the threshold.

In [1, 2] it is shown that the detection of the rate changes is enhanced with synaptic
depression. In [20], it is shown that dynamic synapses are capable of detecting correlations
between afferent neurons, even when the total mean firing rate is unchanged. Static synapses
fail on this task. However, in both these studies the comparison was made for certain fixed
parameter choices, such as overall synaptic strength, neural threshold value, input spike
frequency and synaptic recovery time. The aim of our study is to investigate the CD properties
for static and dynamic synapses, when these parameters are varied. Our definition of CD
contains both the coincident firing of subgroups of presynaptic cells, as studied in [3, 4, 16],
synchronous bursts [20], as well as the synchronous increase of firing rate [1, 2].

In section 3.1 we present numerical and analytical results that show the detection abilities
of an integrate-and-fire (IF) neuron with parameters typical for cortical cells. We explore
regions in the space of parameter values where it is possible to find robust CD when a subset of
the afferent inputs is assumed to receive coincident spike trains. We conclude that with synaptic
depression there exists a range of the threshold values which enable the CD over the large range
of input frequencies. If the synaptic depression is not considered, the frequency window for
detection is smaller and does not depend on the threshold value. We show analytically that
the synaptic dynamics time constant (τrec) is a parameter which strongly affects the region of
good detection in the frequency-threshold domain.

In section 3.2 we show that the conclusion about the enhanced CD with dynamic synapses
also holds for the more complex Hodgkin–Huxley (HH) neuron model.

In section 3.3 we show that this effect is robust even when the coincident events are
distorted by temporal jitter.

In section 3.4 we consider the CD of synchronous rate changes. We demonstrate that
detection of the rate changes also appears to be sensitive to the threshold value in the case of
synaptic depression such that only optimally chosen threshold ensures detection. With static
synapses it seems that tuning of the threshold values that enables this kind of detection is not
possible. Finally we have included an appendix with derivations of our analytical results.

2. Models

We consider a single neuron that receives inputs from Nexcitatory synapses. All inputs are
modelled as Poisson processes with the same mean firing rate f . According to the model
introduced in [1], the dynamics of each depressing synapse i is governed by the following
three-state kinetic scheme:

dxi/dt = zi/τrec − USE xiδ(t − tsp), (2.1)

dyi/dt = −yi/τin + USE xiδ(t − tsp), (2.2)

dzi/dt = yi/τin − zi/τrec, (2.3)
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where xi , yi , zi are, respectively, the fractions of neurotransmitters in the recovered, active
and inactive states. τin = 3 ms and τrec = 800 ms are, respectively, the time constants
for inactivation and recovery processes. USE = 0.5 represents a fraction of the recovered
neurotransmitter released by each presynaptic event. The postsynaptic somatic current from
synapse i is proportional to the fraction of neurotransmitter in the active state, that is,
I i
syn(t) = ASE · yi(t), where the parameter ASE is the maximal postsynaptic current emitted

when the total amount of neurotransmitter is in the active state2. A natural and simple way to
define the static (non-depressing) synapse from this model is to consider3 x(t) = 1 ∀t . Thus,
the system (2.1)–(2.3) reduces to equation (2.2). Under this assumption it can be shown that
the amplitude of the individual postsynaptic current does not depend on the frequency of the
input train. For both descriptions, dynamic or static, the total synaptic current is given by
Isyn = ∑N

i=1 I i
syn .

We use a standard IF neuron, whose membrane potential satisfies

τm dV/dt = −V + Rin Isyn. (2.4)

Parameters have been typical for cortical cells [1, 15], i.e. an input resistance Rin = 100 M�

and membrane time constant τm = 15 ms. We have considered the threshold for firing
Vth = 13 mV above the resting potential Vrest = 0. Every time that EPSP reaches Vth, an AP
is generated and the membrane potential is reset to zero. We choose an absolute refractory
period τre f = 5 ms.

3. Results

3.1. Detection of coincident spike trains

We analyse the responses of a neuron that receives input from N = 1000 afferents where
a subset of M = 200 is stimulated by identical (Poisson) spike trains. We consider that M
correlated inputs constitute a ‘signal’ term while the remaining N − M synapses, stimulated
by uncorrelated spike trains, represent a ‘noise’ term in the synaptic input4. This (simplified)
concept of signal may not correspond to a biologically plausible situation but enables a
derivation of an analytical result that relates relevant model parameters. We will show, however,
that conclusions will also be valid for other more realistic CD tasks.

In figure 1 we illustrate CD capabilities for the IF neuron with dynamic and static synapses.
For the dynamic synapse, the parameter ASE has been set to ASE = 42.5 pA to enable CD at
a frequency of 10 Hz (for the chosen threshold value of Vth = 13 mV). For a static synapse
we have adjusted ASE = 8.5 pA to obtain the same output rate at 10 Hz for both synaptic
descriptions.

Figure 1 shows that the neuron with dynamic synapses is capable of CD at 5, 10 and
30 Hz, whereas the neuron with static synapses only at 5 and 10 Hz. These results depend
on the parameters of the model, most importantly, on the threshold value (Vth) and the input
frequency ( f ). To find the parameter regions of good detection we have varied the frequency
and threshold. For each ( f, Vth) the following quantities have been computed:

2 Note that synaptic conductance rather than the synaptic current depends directly on ASE · yi (t) but this quantity
will approximate the current when the membrane potential is below threshold.
3 An equivalent definition is to consider τrec → 0.
4 For integration of the differential equations (2.1)–(2.4) we have used the Runge–Kutta fourth-order method with a
small time step of 0.05 ms.
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Figure 1. Spike detection in a system consisting of a single IF neuron with parameters typical for
cortical pyramidal cells. The neuron receives N = 1000 synaptic inputs where 20% are randomly
correlated (dark grey dots) at three input frequencies of 5, 10 and 30 Hz. The panels represent
from top to bottom, the input pattern, membrane potential for the neuron with excitatory dynamic
synapses and excitatory static synapses, respectively.

(a) the number of coincident-input-events5 Ninputs ,
(b) the number of output spikes occurring immediately (within the time-window of � = 5 ms

which corresponds approximately to the EPSP rise time) after the coincident-input-events,
that is, hits(Nhits ),

(c) the number of output spikes that are not hits, that is, false-hits (N f alses),
(d) the number of coincident-input-events that did not result in output spikes within the time-

window �, that is, failures for firing (N f ailures ).

We have defined the CD error as

Error = N f alses + N f ailures

Ninputs
. (3.1)

Note that the CD error can be (much) larger than 1 when a low threshold produces a large
number of ‘false-hits’. Figure 2(A) (top) shows the CD error as a function of frequency and
threshold, computed numerically for the neuron with either dynamic or static synapses. The
black area is the area of ‘false-hits’ where the EPSP due to the noise is high enough to cause
repetitive firing. The grey area (area of ‘failures’) represents the region where detection is poor
due to the fact that the total EPSC of the signal and noise is not sufficient to push the EPSP
across the threshold. The light area shows the region where CD occurs with a low percentage of
errors. The main conclusion that arises is that for some optimal threshold value the frequency
window for CD is wider in the dynamic than in the static case. For a static synapse, no matter
how low or high the threshold value is, the frequency window is no wider than about 10 Hz.
5 The ‘coincident-input-events’ are the coincident afferent activity that occurs in a time interval of length T . On
average Ninputs = f T , but an individual trial may deviate from this average (for an illustration, see figure 1 where
Ninputs = 3 at 5 Hz).
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Figure 2. Detection abilities of the IF neuron. (A) (Top): the regions of detection found numerically
for the IF neuron with either dynamic (left) or static (right) synapses, respectively, where 20% of
the synapses receive correlated spike trains. The light area lying inside the contour is a region for
which the neuron is able to detect the signal with a low percentage of errors. The black and grey
regions are the zones with a high percentage of errors. Colour coding is identical in all subfigures.
To obtain a numerical estimate for the CD error (see equation (3.1)), we use a simulation time
window that has been adapted to input frequency, i.e. T = 100

f . (Bottom) Figures represent the
analytical result (see appendix). (B): (a)–(c) show the typical behaviour occurring in the areas
marked with (a)–(c) in panel (A). From top to bottom, they represent the synaptic input at 30 Hz,
membrane potential for the threshold values of 8 mV (false-hits), 13 mV (hits), 30 mV (failures),
respectively.
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Figure 3. Regions of detection computed analytically for four different values of τrec and the same
values of other parameters (note that ASE = 42.5 pA in all figures). The value of τrec = 0 ms
corresponds to the non-depressing (static) synapse. The dashed (solid) curve corresponds to an
analytically found contour line when Error = 1 (Error = 0.4).

For a dynamic synapse, however, there is an optimal threshold that ensures good CD for any
frequency between 0–50 Hz. Figures 2(B) illustrate the typical firing behaviour occurring for
three different parameter choices.

For the IF neuron, it is possible to approximately compute the CD behaviour analytically.
The total synaptic current is composed of both signal and noise contributions, where the signal
contribution comes from the M coincident afferents, and the noise contribution comes from the
N − M independent afferents. The noise contribution consists of a mean plus fluctuations. The
probability that the neuron that receives this stochastic input will fire is given by a first passage
time problem [22], which in general, cannot be solved analytically. We use the Arrhenius
approximation also discussed by [22] to compute this first passage time problem. We show
good agreement between our analytical results and numerical simulations in figures A.1, A.2,
except for low frequency when the first passage problem is not well approximated by the
Arrhenius ansatz. However, we also show that when the number of afferent neurons N is
large the fluctuations can be ignored altogether and the CD error can be well approximated
using the mean synaptic noise current only (figure A.3). Subsequently, we compute the signal
contribution to the current in this same approximation. Using these results we analytically
compute the phase diagram in figure 2(A) (bottom).

The numerical as well as analytical results, indicate that there are apparent differences
between areas of detection for dynamic and static synapses. To examine how CD depends
on the degree of depression, we have varied the time constant for recovery τrec. Figure 3
illustrates that τrec strongly affects the boundaries of (good) detection. It can be noticed that
for any τrec > 0 there exists a threshold at which good detection occurs over a large range of
frequencies. For increasing τrec this threshold moves to smaller values.
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Figure 4. The range of the threshold values depends on the number of correlated inputs. The
white line corresponds to the analytical contour line when Error = 1. Numerical data are given by
different CD error values as shown by the colourbar. Numerical as well as analytical results are
obtained at a frequency of 10 Hz. The numerical simulations lasted for T = 10 s.

The range of threshold values allowing detection is also affected by the number of afferents
with coincident spike trains (M). Figure 4 shows numerical results indicating that the threshold
range (at some fixed frequency) is an increasing function of the number M . The analytical
results are in good agreement with numerical data and show a linear dependency on the number
of coincident inputs.

The detection differences between the static and dynamic synapses as well as the specific
‘bell-shaped’ region of detection found for dynamic synapses can be explained intuitively in
the following way. On timescales that are large in comparison to the membrane time constant,
the membrane potential will attain a constant stationary value V . This value is equal to
Vnoise = Rin Inoise in the absence of correlated inputs, with Inoise from equation (5.5) and equal
to Vnoise + Vsignal , with Vsignal given by equation (5.20) otherwise. Good detection requires
that the threshold membrane potential must obey Vnoise < Vth < Vnoise + Vsignal . For dynamic
synapses, Vnoise (Vnoise + Vsignal) is an increasing saturating (decreasing) function of input
frequency (equations (5.5) and (5.20)). Therefore, the range of thresholds is largest for low
frequencies. For increasing frequency the two curves (Vnoise and Vnoise + Vsignal) approach
each other giving the mentioned bell-shaped region. On the other hand, for static synapses,
both potentials linearly depend on the input frequency leading to the ‘band-shaped’ region of
detection presented in figure 2.

The bell-shaped detection behaviour of neurons with dynamic synapses, i.e. the fact that
for some optimally chosen threshold value their CD property is good over a large range of
frequencies, is also true for other types of CD tasks. In section 3.4 we will show this for the
detection of synchronous increase of firing rates as considered by [1, 2]. In the discussion
section, we provide an explanation why this is also true for the CD task defined by Senn et al
[20].

3.2. Detection with the HH neuron

In this section we investigate whether our result regarding the enhanced detection ability with
dynamic synapses is dependent on the neuron model. We have considered the HH neuron
model with parameters as given in [13]. For this model, the value of the threshold is fixed and
cannot be varied as in the IF model. Therefore we vary the strength of the synaptic current,
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Figure 5. The detection ability of the HH neuron. We show the regions of detection found by
the HH neuron with dynamic synapses where 10% of the synapses receive coincident spike trains.
The light area inside the contour (solid black curve) denotes the region with Error < 0.6. The grey
and black areas represent regions with a higher percentage of errors. To estimate the CD error, the
numerical simulations lasted for T = 100

f s.

that is, the parameter6 ÃSE instead of the threshold. The dynamic synapses are modelled as
explained in section 2 with parameters τrec = 300 ms, τin = 3 ms and USE = 0.5. The
frequency is varied in the range between 1 and 70 Hz, the percentage of coincident inputs
considered here is 10% and the total number of afferents is N = 1000. For each value of
frequency and ÃSE , the CD error defined above has been computed as shown in figure 5. The
black and grey regions represent the regions with a high number of ‘false-hits’ and ‘failures’,
respectively, while the light region corresponds to the region of good detection. The figure
shows that there is a range of synaptic-strength values that ensures good detection within the
large frequency window. Thus, the dynamic synapses produce similar effects on the detection
ability (i.e. the ‘bell-shaped’ region of detection) of both the HH neuron and the IF neuron.

3.3. Effect of jitter

Many experimental studies reveal that cortical neurons fire with high temporal precision but not
exactly simultaneously as considered in the previous sections. Some studies report that timing
differences of afferent firing are of the order of a few milliseconds [16]. To study the effect of
temporal jitter on the coincident detection ability we assume that spikes arrive approximately
at the same time but not exactly. We consider that M = 200 afferents fire at moments that are
Gaussian distributed around a mean value with a standard deviation of σ = 4 ms [16] whereas
the mean values are Poissonian distributed. The remaining N − M synapses are independent
Poisson spike trains as before. All afferents fire with the same input frequency f . For a sample
of the data see figure 6. We analyse the detection ability of the neuron in the same manner as
in the first part but the time window for detection (�) is from −3σ to 3σ centred on the mean
signal time. The duration of the correlated activity is determined by the temporal jitter and
to ensure no overlaps between two consecutive signal events, the input frequency f is varied
within the range 1–30 Hz. To compute the CD error we use the same notions of hits, false-hits
and failures as before, where we consider that if the neuron fires at least one time within the
window �, such an event is defined as a ‘hit’. If the neuron fails to fire within the window,

6 ÃSE is the parameter ASE (see section 2 and 3) in units of µA cm−2.
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Figure 6. From top to bottom the figures show a raster plot of N = 1000 afferents where 20% are
temporally correlated with a jitter of σ = 4 ms, total synaptic current and corresponding voltage
response, respectively, at a frequency of 10 Hz.

the event is considered as a ‘failure’. The ‘hits’ occurring in intervals between the windows
are regarded as ‘false-hits’. Figure 7 shows that qualitatively the same conclusions regarding
the CD properties appear to be valid in this more realistic case. In short, for the dynamic case
there exists an optimal range of threshold values which allows CD within a relatively large
frequency window. The fact that similar detection properties are found with the temporal jitter
is consistent with findings of Marsalek [19] showing that the IF neuron can perform CD as
long as the jitter is smaller than the membrane time constant τm (15 ms in our case).

3.4. Detection of firing rate changes

The capability of a neuron to detect synchronous increases in the afferent firing rates has
already been well explored in [1, 2]. In [1, 2] it was shown that for some selection of the
relevant parameters, transient behaviour of the depressing synapses enables detection of the
rate changes. Non-depressing synapses cannot give such transient responses. Here we study the
dependence of this task on frequency and threshold. We assume a scenario when a population
of N = 1000 afferents synchronously changes its firing rate every 500 ms. In figure 8 we show
the membrane potential for various threshold values. Dynamic synapses can detect the moment
of change in the firing rates if the threshold value is optimally chosen (third panel in the figure).
In this case, detection is possible over a large range of frequencies (5–60 Hz). For somewhat
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Figure 7. Left: regions of detection found numerically for an IF neuron with depressing (dynamic)
synapses where 20% of afferents are temporally correlated with a jitter of σ = 4 ms. Right:
the regions of detection for an IF neuron with non-depressing (static) synapses. Colour coding is
given by the colour bar where white denotes low percentage errors (good detection) while grey
and black mean high percentage errors (bad detection). The black curve denotes the contour line
when Error = 0.5. The duration of the numerical simulation has been adapted to input frequency,
T = 100

f .

higher or lower threshold values, the neuron fails to fire or fires too often, respectively. Using
equation (5.5) (in the appendix) we can easily estimate the area of good detection for this task.
When the firing frequency of all afferent inputs changes from7 f1 to f2, ( f2 > f1) the threshold
must be chosen such that the response is transient, i.e. C f2w( f1) > Vth > C f2w( f2) with
w( f ) given by (5.5) and C = Rin Nτin (see the appendix). For fixed δ f = f2 − f1, C f2w( f1)

is a decreasing function of f1 for δ f τrecUSE > 1, which is typically the case, and C f2w( f2)

is an increasing function of f2 and therefore of f1. Both saturate to the same asymptotic value
C ASE/τrec ∼ 16 mV. Therefore for fixed δ f , there is an optimal threshold value that allows
good detection over a large range of frequencies. Since the two asymptotes converge to the
same value, this range is limited to a maximum frequency, as a result of noise. The static
synapse gives a response proportional to the average input frequency but there is no threshold
value that ensures detection of the moments of abrupt rate changes.

4. Discussion

One of the important issues of neural functionality is the question whether the neuron is capable
of extracting features of a particular signal from a noisy background. This issue is essential in
biology, for instance when animals must distinguish regularities from a variety of changing and
noisy input signals. Precise timing of APs may be used to convey such relevant information
and CD as considered in this paper thus seems to be an important mechanism.

In this study we have shown how CD depends on the synaptic dynamics. Whereas
static synapses require a frequency-dependent threshold value (or synaptic strength) for good
detection, dynamic synapses can perform good CD over a large range of frequencies for one
suitably chosen threshold value. This implies that no threshold adaptation mechanisms are
required to perform well under variable conditions. In fact, the adaptation is done by the
synapses themselves. We have shown that this general finding is true for various types of CD
tasks, such as the detection of coincident spike trains or spike trains that are distorted with
temporal jitter as well as the detection of synchronous rate changes.
7 Note that f2 − f1 > 0 is necessary for the detection of rate changes.
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Figure 8. Detection of the changes in the firing rates. From top to bottom the panels represent the
overall firing rate of the afferent population, corresponding voltage responses of the IF neuron with
dynamic synapses at the threshold value of Vth = 13, 17, 30 mV, respectively.

The same finding is also valid for the detection of the correlated bursts [20]. In that study
it was reported that neurons with dynamic synapses were capable of detecting correlations
between afferent neurons during the stimulus, despite the fact that the mean firing rate ( f )
was unchanged. They assumed that every 50 ms another group of M = 100 neurons was
bursting while the rest of the population fired at a reduced background frequency, such that
the mean frequency over all N = 500 neurons was f . Due to the reduced firing rate between
bursts dynamic synapses were able to partly recover and strongly respond at the bursts onset.
The responses of the static synapses followed the unaltered mean firing rate f and thus could
not discriminate the correlated bursts during the tone stimulus from the activity before the
stimulus. For this CD task, detection requires Vpre−stim < Vth < Vstim , where Vpre−stim

(Vstim) represents the membrane potential during the pre-stimulus (stimulus) period. If one
studies the detection for dynamic synapses as a function of the background frequency f0 for
constant, high, burst frequency f1 one finds that Vpre−stim increases and saturates with f and
thus with the background frequency f0 while Vstim decreases with increasing background
frequency8. Since these two curves approach each other the area of good detection is again

8 The membrane potential during the pre-stimulus period is Vpre−stim ∝ f w( f ), where f equals the mean frequency
during the stimulus period, i.e. f = (N−M)

N f0 + M
N f1 and w( f ) as given by equation (5.5). At the beginning of each

burst, the membrane potential receives contributions from (a) a new bursting subpopulation, (b) other inputs that were
previously bursting and (c) the remaining inputs, that is, Vstim ∝ M

N f1w( f0) + M
N f0w( f1) + (N−2M)

N f0w( f0). This

function is a decreasing function of f0 when 1 + ( f1 − f0)τrecUSE > N
M , which is the case for the specific example

considered in [20].
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bell shaped and for the optimally chosen threshold value the detection is possible within the
relatively large range of background frequency.

For the idealized case of coincident spike trains we have presented analytical results that
show good agreement with numerical results. With this type of CD it is possible to derive
analytical expressions that relate all relevant parameters and we have found how CD ability
depends on other important parameters such as the number of coincident afferents (M) or the
recovery time constant (τrec). We have not analysed how the CD is affected by the membrane
time constant because this is already well explored in [17, 19] and it is expected to find better
CD properties with smaller τm . The effects of temporal jitter are not thoroughly explored but it
is worth mentioning that the jitter reduces the amount of synchrony decreasing the amplitude
of the signal [19] and thus reduces the range of optimal thresholds for good detection.

We have not considered inhibitory inputs in this study, mainly because the dynamics of
inhibitory synapses is less well established. It is expected that adding static inhibitory input
will effectively reduce the threshold linearly with frequency. Therefore, in the presence of
inhibition the CD with dynamic synapses is also expected to be superior.

It is known that in addition to depression,synapses also display short-term facilitation. The
functional role of facilitation is less clear than for depression, since it has been demonstrated that
pair pulsed stimulation, in addition to inducing LTP, will tend to reduce facilitation in favour of
depression (synaptic redistribution) [5]. If it is true that LTP is a form of Hebbian learning and
has therefore behaviour relevance for the animal, one should conclude that synaptic facilitation
is of less functional relevance than depression. Nevertheless, the effects of facilitation on CD
should be investigated.
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Appendix. Analytical results

Here we derive the analytical expressions that have been used to analytically compute
equation (3.1). The total input current consists of a signal part and a noise part. We first
treat the noise part and compute the number of the ‘false-hits’ (N f alses ) considering only the
mean level of the synaptic current. Then we compare this number with the corresponding value
found by a more general noise treatment, i.e. by a hazard-function approximation [22]. We
conclude that this approximation does not greatly change the effective level of the ‘false-hits’.
Furthermore we estimate the signal contribution and compute the number of ‘failures’ as well
as the CD error (3.1).

4.1. Noise contribution

The noise part of the current consists of a large (N − M) number of independent contributions,
each one corresponding to a single synapse, that is I = ∑N−M

i=1 Ii . If a single spike arrives at
the synapse i at time t∗, then for t = t∗ + τ (τ > 0) the current produced by this spike is given
by

Ii (τ ; t∗) = Ipeak exp(−τ/τin); (5.1)
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between numerical current fluctuations computed for 200 depressing synapses (solid curve) and
theoretical formula provided in equation (5.8) (dashed curve) and (5.6) (dotted curve). Right: mean
synaptic current theoretically computed with formulae (5.7) (dashed curve) and (5.5) (dotted curve)
compared with the numerical mean synaptic current for 200 depressing synapses (solid curve).

(cf equations (2.1)–(2.3)). Here, the amplitude Ipeak represents the averaged stationary EPSC
amplitude computed for a regular spike train which we assume also valid for the irregular
case [1]

Ipeak = ASE
USE (1 − e−1/ f τrec )

1 − (1 − USE)e−1/ f τrec
. (5.2)

We can compute the mean noise contribution of the current and the current fluctuations using
the standard expressions

Inoise ≡ 〈I 〉, (5.3)

σ 2
Inoise

≡ 〈I 2〉 − 〈I 〉2. (5.4)

From these definitions, using the central limit theorem and assuming τin 	 τrec we obtain9

Inoise = (N − M)ASE f τinUSE
1 − e−1/ f τrec

1 − (1 − USE )e−1/ f τrec
, (5.7)

and

σ 2
Inoise

= (N − M)A2
se

τin f (1 − e−2/ f τin )

2

(
Use(1 − e−1/ f τrec )

1 − (1 − Use)e−1/ f τrec

)2

+ O(τ 2
in f 2). (5.8)

Figure A.1 shows a comparison between the numerical current-fluctuations and mean current
for 200 dynamic synapses,and the corresponding analytical expressions (5.7) and (5.8) (dashed
curve) as well as the analytical expressions (5.5) and (5.6) (dotted curve).

9 Analogous expressions can be derived directly from equations (2.1)–(2.3) using different reasoning. One can obtain

Inoise = (N − M)ASE
f τinUSE

1 + f τrecUSE
≡ (N − M) f τinw( f ), (5.5)

σ 2
noise = (N − M)

f τin

2

(
ASE USE

1 + f τrecUSE

)2

= (N − M)
f τin

2
w2( f ), (5.6)

(for equation (5.5) see also [1]), where w( f ) = AS E US E
1+ f τrecUS E

can be interpreted as the stationary synaptic strength
at frequency f . Assuming f τrec 
 1 and τin → 0, equations (5.7) and (5.8) reduce to equations (5.5) and (5.6)
(cf figure A.1).
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If we neglect the current fluctuations (σInoise = 0), the membrane potential in the absence
of an absorbing threshold is given by Vnoise = Rin Inoise. From this expression we can
compute the number of the ‘false-hits’. False firing occurs when Vnoise > Vth and the
total number of ‘false-hits’ in a period of time T is approximately given by N f alses ≈
T/(τre f − τm ln(1 − Vth/Vnoise)) [15]. Then, we can relate N f alses with the number of the
coincidence-input-events (Ninputs ) using the fact that T = Ninputs/ f . Thus, we obtain

N f alses = θ(Vnoise − Vth)Ninputs

f [τre f − τm ln(1 − Vth/Vnoise)]
, (5.9)

where θ(x) is the Heaviside function. For Vnoise < Vth we have N f alses = 0.
In the presence of fluctuations, the expression (5.9) is not valid anymore and the number

of ‘false-hits’ can be found in the following way. First, we have to rewrite the IF equation (2.4)
by introducing a fluctuating term, that is,

τm dV (t)/dt = −V (t) + I(t) + σI
√

τmξ(t), (5.10)

where I(t) = Rin Inoise, σ 2
I = R2

inσ
2
Inoise

and ξ(t) is a Gaussian white noise with autocorrelation
〈ξ(t)ξ(t ′)〉 = δ(t − t ′) (see [23]). For simplicity, let us first consider τre f = 0 ms. In the
presence of an absorbing threshold Vth the probability ρ(τ ; t∗) of a spike occurring at time
t = t∗ + τ , given the last spike at t∗ defines a conditional inter-spike-interval (ISI) distribution.
As suggested in [22] this distribution can be given by

ρ(τ ; t∗) = h(τ ; t∗) exp

[
−

∫ τ

0
h(s; t∗) ds

]
, (5.11)

where h(τ ; t∗) (a so-called hazard function) describes the risk of escape of the membrane
potential across the threshold value. For the hazard function we use the Arrhenius ansatz [22]
which depends only on the momentary distance between the noise-free membrane potential
V0 and the threshold Vth scaled by the noise amplitude, that is

h Arr (τ ; t∗) = � exp

{
− (Vth − V0(τ ; t∗))2

σI2

}
(5.12)

where � represents a free parameter of the Arrhenius ansatz. To compute the ISI
(equation (5.11)) we need to compute∫ τ

0
h Arr (s; t∗) ds = �

∫ τ

0
exp

{
− (Vth − V0(s; t∗))2

σI2

}
ds, (5.13)

where V0(τ ; t∗) = Vnoise[1 − e−τ/τm ] is found by integration of the IF equation in the absence
of an absorbing threshold [22].

The expression on the right-hand side of equation (5.11) is intractable and must be solved
numerically. Then, we can compute the average time interval between two consecutive spikes
by computing the average

〈τ 〉 =
∫ ∞

0 τρ(τ ; t∗) dτ∫ ∞

0
ρ(τ ; t∗) dτ

, (5.14)

whose inverse gives the output frequency of the postsynaptic neuron, that is fout = 1/〈τ 〉.
In figure A.2 we compare fout theoretically computed with the Arrhenius ansatz (where the
free parameter � has been chosen such to fit the numerical data, that is, � = 0.2) and the
numerical result for two different inputs frequencies showing a good fit of the escape noise
ansatz approximation with the numerical data. The approximation fails near the critical Vth

for nonzero output frequency.
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Figure A.2. Left: output frequency of the postsynaptic neuron receiving Poissonian spike trains
from 800 afferents at input frequency f = 30 Hz (top) and f = 80 Hz (bottom) for τre f = 0.
Right: the same results for non-zero refractory period τre f = 5 ms.

In the low-threshold region Nhits 	 N f alses , thus the number of the ‘false-hits’ is
approximately given by

N f alses ≈ T fout = T

〈τ 〉 . (5.15)

If we assume that in this region the number of failures is almost zero10, the CD error
(equation (3.1)) is given by

Error ≈ N f alses

Ninputs
= fout

f
. (5.16)

Figure A.3 represents the curve fout/ f = 1 numerically computed for the non-zero
refractory period of 5 ms (solid curve), the corresponding plot computed within the Arrhenius
ansatz approximation (dashed curve) (note that for the non-zero refractory period fout =

1
τre f +〈τ 〉 ) and the same plot computed using equation (5.9) (dotted curve). The deviation of the
Arrhenius ansatz approximation from the numerical result for low f is due to the fact that
the Arrhenius ansatz approximation fails near the critical point, that is the point at which fout

becomes zero (cf figure A.2 (right)). The figure shows that above 30 Hz the analytical contour
plot found by the Arrhenius ansatz approximation gives almost the same results as the analytical
plot found with the analysis considering only the mean noise current. Therefore, we conclude

10 This assumption is supported by numerical data.
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Figure A.3. The plot that corresponds to fout = f . The solid curve represents the numerical
results for the neuron receiving input from N − M = 800 afferents, the dotted curve denotes the
analytical line found using equation (5.9) and the dashed curve corresponds to analytical results
found using the Arrhenius ansatz approximation.

that the voltage level given by Vnoise = Rin Inoise is suitable to be used in equation (5.9) to
compute the actual number of the ‘false-hits’. For this reason we will also ignore fluctuations
to compute the number of the ‘failures’ in further calculations.

Signal contribution

To analyse the signal contribution (arising from M coincident spikes) we first have to estimate
the voltage level Vsignal . Suppose, that the membrane potential at t = t∗ when M coincident
spikes arrive is given by V (0; t∗). Then, the membrane potential for t = t∗ + τ (τ > 0) can
be computed by integration of the IF equation, that is

V (τ ; t∗) = e−τ/τm

(
V (0; t∗) +

Rin M Ipeak

τmα
[eατ − 1]

)
, (5.17)

where α = τin−τm
τin τm

. If the next signal (M coincident spikes) occurs at t = t ′, we can obtain the
following recurrence relation:

V (0; t ′) = e−�t/τm

(
V (0; t∗) +

Rin M Ipeak

τmα
[eα�t − 1]

)
, (5.18)

where �t = t ′ − t∗. From this relation we can compute the stationary value for the membrane
potential at the exact time of signal arrival, that is

Vst = e−�t/τm
Rin M Ipeak

τmα

(eα�t − 1)

(1 − e−�t/τm )
; (5.19)

(see also [18]). Furthermore, we need to compute the maximum of the membrane potential
between consecutive EPSC signal events that we define as Vsignal . This can be easily computed
from equation (5.17), with V (0; t∗) replaced by Vst :

Vsignal =
[

τm(1 − e−1/ f τm )

τin(1 − e−1/ f τin )

] τm
τin −τm

Rin M Ipeak, (5.20)
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where f = 1/�t . The number of failures N f ailures counts the number of times the voltage
produced by ‘signal’ plus ‘noise’ does not reach the threshold value and can be obtained from

N f ailures = Ninputs − Nhits , (5.21)

where Ninputs and Nhits count the number of the ‘coincident-input-events’ and the number of
the ‘hits’, respectively. If the level of the signal Vsignal is higher than Vth , every ‘coincident-
input-event’ produces a ‘hit’ and the number of failures is zero. Otherwise, when Vsignal < Vth

we have

N f ailures = Ninputs

[
1 − θ(Vnoise + Vsignal − Vth)

f (τre f + τ1)

]
, (5.22)

where θ(x) is the Heaviside function whereas τ1 represents the rising time of the membrane
potential (after the absolute refractory period) and can be found from V0(τ1; t∗+τre f )+Vsignal =
Vth . Finally, from last expressions we obtain

N f ailures = Ninputs

[
1 − θ(Vnoise + Vsignal − Vth)

f
[
τre f − τm ln

(
1 − Vth−Vsignal

Vnoise

)]
]
, (5.23)

where for Vnoise + Vsignal < Vth we have N f ailures = Ninputs . From equations (5.23) and (5.9)
we analytically compute the CD error (3.1) (cf figures 2, 3).
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