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a b s t r a c t

We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses
Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when
an error is detected. We analyze the quality of the proposed approach in relation to the misclassification
of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and
MEG data.We show that the proposed adaptive framework significantly improves the static classification
methods.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The interest in Brain Computer Interfaces has quickly grown
in the last few years. The possibility to provide disabled people
with new communication channels, such as BCI spellers, new
mobility channels such as BCI drivenwheel chairs or BCI controlled
mechanical prostheses makes this a very attractive research field.
However, the applicability of current BCI systems is still limited
because of a number of problems. One of these problems is the
presence of non-stationarities in the data (Shenoy, Krauledat,
Blankertz, Rao, & Müller, 2006). This causes patterns associated
with each task during the training of the BCI to be different during
testing, leading to a poor performance.

Several approaches have been proposed to overcome this
problem by the introduction of adaptive classification meth-
ods (Sykacek, Roberts, & Stokes, 2004; Shenoy et al., 2006;
Pfurtscheller, Neuper, Schölgl, & Lugger, 1998). In Shenoy et al.
(2006), it is shown how the probability distributions associated
with class features change between training and test sessions, and
assuming that the labels of new incoming trials are known, it is
shown that proper updates in the classifier parameters would im-
prove the performance of the original static classifier. Note that
in the BCI setting we normally do not know the user intention, so
the labels of the trials are unknown. We propose the use of neural
feedback to detect incorrect performance of the device, and to be
able to recover the labels in the case of a binary classification task.
The on-line detection of the wrong performance of a BCI has been
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addressed before by means of Interaction Error Potentials (IErrP)
(Ferrez & Millán, 2008, 2005; Seno, Matteucci, & Mainardi, 2010).

Error-related potentials are potentials detected in the recorded
electroencephalogram (EEG) of a subject just after an error occurs.
The error is the difference between the expected and the actual
result of an action. Error-related potentials have been studied
in many different scenarios since the late 1980s (Falkenstein,
Hohnsbein, Hoormann, & Blanke, 1990; Miltner, Braun, & Coles,
1997; van Schie, Mars, Coles, & Bekkering, 2004; Ferrez, 2007). It
is well known that the presence of an error is usually followed
by what are called event-related negativity and positivity which
are present in the alpha band in the fronto-central channels.
More recently, a study using Magnetoencephalography (MEG)
(Mazaheri, Nieuwenhuis, van Dijk, & Jensen, 2009) has shown that
an erroneous reaction to stimuli is followed by an increase in the
frontal theta and a decrease in the posterior alpha and central beta
powers.

Based on the nature of the feedback, the error-related potentials
can be categorized as response error potentials (Falkenstein et al.,
1990; Mazaheri et al., 2009), feedback error potentials (Miltner
et al., 1997), observation error potentials (van Schie et al., 2004)
and the most interesting for us, interaction error potentials
(IErrP) which are present when a device delivers an erroneous
feedback (Ferrez, 2007).

Since the IErrP are present in the recorded EEG of a subject
controlling a device just after the device returns an unexpected
feedback (the BCI makes a classification error) (Ferrez & Millán,
2008), its detection can help to construct a more robust BCI,
either by correcting the BCI output directly (Ferrez, 2007), or
more interestingly, by adapting the BCI classifier to prevent similar
mistakes in the future. This idea is illustrated in Fig. 1.
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Fig. 1. (a) Classical scenario: brain activity is measured during a period of time, then the task classifier decides the class label given the measured activity and the device
produces an output. (b) Proposed scenario: after task classification, an IErrP classifier uses feedback from the user (subsequent data from zero to one seconds after (a)) to
compare previous user intention with the device output. If an IErrP is detected, the parameters of the task classifier are updated.
Although the possibility of BCI adaptation using error feedback
from the user has been previously proposed (Chavarriaga, Ferrez, &
Millán, 2007), the impact of using an IErrP classifier to improve the
original task classifier has not been studied before in a realistic BCI
setting. In this article, we explore this idea in detail. In Section 2
we introduce a framework based on reinforcement learning for
adaptive BCI using an IErrP classifier as a control signal.We analyze
the effect of IErrP misclassification in terms of false positives and
false negatives, and we measure how the performance of the task
classifier is affected. In Section 3, we first perform the single trial
classification of IErrP and then we apply the proposed adaptive
method toMEGdata collected during a binary forced-choice covert
attention task.

2. Adaptive BCI classifier

In this section we introduce the proposed method to design a
binary adaptive BCI. We consider a binary task with an adaptive
task classifier that learns from the output of a static IErrP classifier
in order to minimize erroneous feedback.

2.1. Adaptive learning rule

Consider the (unobserved) subject’s intention, left or right, that
we denote as target class t ∈ {0, 1} respectively. The generated
brain activity is measured and a vector of feature values x :=

(x1, . . . , xn) is extractedwhich is relevant to discriminate between
both classes. We use the logistic regression model (Bishop, 2007)
which takes the form:

p(t = 1|x,w) = σ(x,w) =
1

1 + e
−

n∑
i=0

wixi

, (1)

where w ∈ Rn+1 is the vector of weights, and x0 = 1 accounts for
the bias term.
The error in the prediction is quantified as the log-likelihood of the
data:

G(x,w, t) = −(t ln σ(x,w) + (1 − t) ln(1 − σ(x,w))). (2)

The output of the task classifier is defined as

t̃ = χ


p(t = 1|x,w) >

1
2


, (3)

where χ returns 1 if its argument is true and 0 otherwise. An
adaptive learning rule for the parameters w updates w in the
direction of the gradient of (2):

1wi = η
∂G(x,w, t)

∂wi
= η(t − σ(x,w))xi, (4)

where η denotes the learning rate.
In a realistic BCI setting however, the intention of the user t
is unknown. We define E ∈ {0, 1} as the user’s true absence or
presence of surprise following the output of the device. Thus E = 0
corresponds to t̃ = t and E = 1 to t̃ ≠ t . After the output of
the task classifier (t̃) is delivered, subsequent brain activity (neural
feedback) is measured and a feature vector y := (y1, . . . , ym) is
extracted and used by the IErrP classifier to provide an estimation
of E, which we denote by Ẽ ∈ {0, 1}. Updates occur only when a
surprise is detected (Ẽ = 1), in which case the observed output t̃
is presumably incorrect, so t = 1 − t̃ and the learning rule (4) for
the task classifier becomes

1wi = ηẼ(1 − t̃ − σ(x,w))xi, (5)

where 1 − t̃ is the opposite label from the output of the task
classifier.

The performance of thismodel clearly depends on the flexibility
of the model to adapt to changes at the correct time scale (Heskes
& Kappen, 1991, 1992), but also on the asymptotic behavior of
the task classifier in relation to the misclassification of IErrP. In
Sections 2.2 and 2.3 we study this relation.

2.2. Effect of IErrP misclassification

The performance of a BCI system based on the previous frame-
work clearly depends on the accuracy of the IErrP classifier. Previ-
ous researchers have reported classification rates of IErrP of around
80%, as well as the stability on IErrP detection across sessions
(Ferrez & Millán, 2008). The misclassification of IErrPs can occur
in two ways (see Fig. 2):

False positives. Correctly classified trials (t̃ = t) are considered
to be erroneous, causing an update of the task classifier
parameters with the wrong class label. We characterize
the rate of false positives with α1.

False negatives. Erroneously classified trials (t̃ ≠ t) are considered
as correct. As a consequence, the task classifier parame-
ters will not be updated when it is desirable. We charac-
terize the rate of false negatives with α2.

Note that the effect of false positives results in learning from in-
correctly labeled data, whereas false negatives result in discarding
potentially useful learning samples.

2.3. Simulations

In order to better understand the asymptotic behavior of the
task classifier in relation to the accuracy of the IErrP classifier
(α1 and α2), we consider an artificial binary class classification
problem in a one-dimensional feature space. For each class t ∈

{0, 1}, the feature is distributed according to a Normal distribution
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Fig. 2. The first column represents the target (t) intended by the user; the second
column compares the user intention with the output of the task classifier (t̃); the
third column shows the possible outputs of the IErrP classifier (Ẽ) as well as the
effect produced in the task classifier due to the proposed method. Learnmeans that
the parameters of the task classifier are updated using Eq. (5).

parametrized as p(x|t) = N (µt , σ
2). We choose σ = 1. The

distance between µ0 and µ1 determines the overlap between the
distributions and different levels of overlap result in classification
problems with different optimal classification rates. We consider
three different distances ρ = |µ0 − µ1| = {1, 2, 4}. For ρ = 1,
the classification task is difficult and the optimal Bayes classifier
accuracy is at most 0.70 whereas for ρ = 4 the task is easy and
classification rate reaches 0.99 (see Fig. 3).

We start with a random weight vector w0. For each trial i, i ∈

{1, . . . ,M}, we will assume that p(t i = 0) = p(t i = 1) =
1
2 and

we draw a sample from p(x|t i). This sample represents a feature
extracted from the measured brain activity generated by the user
while having intention t i. The output of the BCI device t̃ i is obtained
using Eq. (3) and is then compared with t i:

• If t i = t̃ i, we draw Ẽ = 1 with probability α1 and apply (5). In
this case learning occurs with the wrong label. The classifier is
not adapted with probability 1 − α1.

• If t i ≠ t̃ i, we draw Ẽ = 1 with probability 1 − α2 and we
apply (5). In this case the task classifier is correctly adapted.
With probability α2 the classifier is not updated.

We observe that for any condition (with 0 ≤ α1 < 0.5
and 0 ≤ α2 < 0.5), the adaptive classifier improves the initial
random boundary and converges after a short initial transient
which we neglect for performance evaluation. In the experiments
we set M = 105 and we consider the last 20% of the trials for
performance evaluation, but the results do not critically depend on
this choice. Fig. 3 shows the classification error of the task classifier
as a function ofα1 andα2 for different values ofρ. Forα1 = α2 = 0,
the method converges to the Bayes classification error for all ρ.

For difficult problems such as ρ = 1, the baseline classification
rates are poor. In these cases, the surface remains constant for large
values of α1 and α2 suggesting that the effects of misclassification
in the IErrP classifier are not severe. On the contrary, for ρ = 4
optimal classification is very accurate. The adaptive task classifier
is then more sensitive in this scenario and small increases in α1
decrease significantly the performance of the classifier. We can
see also that the performance of the method does not depend so
much on α2. Therefore, as expected, learning from wrong samples
is more costly than discarding good samples. This is an important
fact, since the relation between false positives and false negatives
can be incorporated in the design of the IErrP classifier, in such a
way that the effect of IErrP misclassification is minimized.

Note that the result assumes that the misclassification rate of
the IErrP classifier is independent of whether the user intention is
left or right. More exactly, defining αL

i and αR
i for i ∈ {1, 2} as the

rate of false positives/negatives associated with left and right user
intention respectively, we have that

αi =
αL
i + αR

i

2
(6)

and we assumed that for i ∈ {1, 2} αL
i ≈ αR

i , i.e. false posi-
tives/negatives are balanced for both right and left. Violation of this
assumption introduces additional error, which we have studied in
Appendix. We concluded that this effect is in general small.

3. Results on MEG data

In this section we show the applicability of the proposed
method using MEG data. In Section 3.1 we describe the BCI
experiment used to gather the data that will be used in the rest
of the section. In Section 3.2 we construct an IErrP classifier (trials
with an unexpected/expected device output), and in Section 3.3we
perform a comparison between a static classifier and the proposed
adaptive method.

3.1. Data acquisition

Eight healthy subjects were instructed to direct a forced-task
binary BCI device using the covert attention paradigm. Covert
spatial attention is a well known paradigm for BCI control, based
on the lateralization of the power in the alpha-band in posterior
channels (van Gerven & Jensen, 2009; van Gerven, Bahramisharif,
Heskes, & Jensen, 2009a; van Gerven, Hesse, Jensen, & Heskes,
2009b). The design has been carefully chosen to avoid any
lateralization due to movement or stimulus presentation.
The description of the experiment is as follows (see Fig. 4 for more
details).

Two squares and a fixation cross appear on the screen. After
300 ms, the fixation cross turns into an arrow (pointing left or
right). The subject is instructed to direct his/her attention to the
direction indicated by the arrow while maintaining fixation at
the center of the screen. After 2000 ms, the arrow disappears
Fig. 3. Classification error for the adaptive classification method as a function of the false positive α1 and false negative α2 of the IErrP classifier. The results are shown for
three different levels of overlap between the two distributions. A constant grey surface on the bottom indicates the optimal Bayes classifier which we use as a baseline. We
set η = 10−5 for this case, although results were equivalent for learning rates in a wide range. For better visualization the figure needs to be printed in color.
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Fig. 4. The experimental protocol is a sequence of four steps: after a fixation cross an arrow appears and the subject has to attend accordingly. Two seconds later, the
feedback is displayed as a text. At this point, a mismatch between the feedback and the direction instructed by the arrow is expected to elicit an IErrP.
and is replaced with a text indicating the decision of the device
(right or left). The output is chosen at random in such a way
that 80% of the trials are equal to the instructed direction and
in the remaining 20% are equal to the opposite direction. The
text remains visible for 1000 ms. Finally, the text disappears and
the two squares persist for 1000 ms before a new trial starts.
Although we instructed the subjects to direct the device in the
indicated direction, they were not informed of the fact that the BCI
output was not under their control but computed by the random
protocol. For each subject we collected 504 trials divided in 6
sessions with one minute of rest between each two sessions (84
trials per session). Ongoing brain activity was recorded (sampling
rate: 1200 Hz; low-pass filter: 300 Hz) using a whole head MEG
systemwith 275 axial gradiometers (CTF Systems, Canada) inside a
magnetically shielded room. Head localizationwas done before the
experiment using coils thatwere placed at the nasion, right and left
ear canal. Themagnetic fields produced by these coils were used to
measure the position of the subject’s headwith respect to theMEG
sensor array. In addition we also recorded vertical and horizontal
electrooculogram (EOG) in order to remove trials contaminated
with muscular activity.

3.2. IErrP classification

The recorded data was segmented in trials starting 1500 ms af-
ter the onset of arrow presentation and finishing 1500 ms after
the output of the device (left/right) was returned. Data segments
contaminated with artifacts, eye movements, eye blinks or muscle
activity were detected and removed using a semi-automatic rou-
tine. Then the planar gradiometer representation of the data was
computed. The calculated planar field gradient approximates the
signals measured by physical planar gradiometers (Bastiaansen,
2000). Time frequency representations (TFRs) of power were cal-
culated using a multitaper approach applied to short sliding time
windows (Percival &Walden, 1993). The data in each timewindow
were multiplied with a Hanning taper with the length of the time
window for the frequencies [3, . . . , 30]Hz.We applied an adaptive
time window of length 1T = 3/f . The power values were calcu-
lated for the horizontal and vertical components of the estimated
planar gradient and summed.

As features for classification we used the normalized power in
all channels with a time window from 150 to 1000 ms after device
output. The choice of frequency bands and timewindow of interest
is based on previous work (Mazaheri et al., 2009). Note that we do
not restrict the feature space to fronto-central areas as is usually
the case for this problem (Ferrez & Millán, 2008).

In order to classify the surprise, E, based on the IErrP, we
used a linear support vector machine (Vapnik, 1995), where
the regularization parameter was determined based on initial
empirical testing. The performance is calculated as the percentage
of correctly classified trials. In order to reduce the dependence of
the results on the particular split of train and test set, we repeated
the ten-fold cross-validation procedure ten times, each time with
a different partition of the data. In this way, the performance is
estimated by averaging the performances of this repeated ten-fold
Table 1
Classification results of IErrP.

Subject Performance
(%)

Confusion matrix α1 α2

1 83.84

0.841 0.159
0.164 0.835


αR
1 ≈ 0.085

αL
1 ≈ 0.073

αR
2 ≈ 0.082

αL
2 ≈ 0.082

2 74.33

0.757 0.243
0.270 0.730


αR
1 ≈ 0.110

αL
1 ≈ 0.133

αR
2 ≈ 0.138

αL
2 ≈ 0.132

3 77.83

0.781 0.219
0.224 0.776


αR
1 ≈ 0.091

αL
1 ≈ 0.128

αR
2 ≈ 0.100

αL
2 ≈ 0.124

4 78.21

0.788 0.211
0.223 0.776


αR
1 ≈ 0.102

αL
1 ≈ 0.109

αR
2 ≈ 0.114

αL
2 ≈ 0.109

5 73.95

0.756 0.244
0.276 0.724


αR
1 ≈ 0.126

αL
1 ≈ 0.118

αR
2 ≈ 0.121

αL
2 ≈ 0.155

6 86.25

0.880 0.120
0.155 0.845


αR
1 ≈ 0.067

αL
1 ≈ 0.052

αR
2 ≈ 0.082

αL
2 ≈ 0.072

7 82.63

0.835 0.165
0.182 0.818


αR
1 ≈ 0.082

αL
1 ≈ 0.082

αR
2 ≈ 0.092

αL
2 ≈ 0.090

8 88.27

0.907 0.092
0.142 0.857


αR
1 ≈ 0.050

αL
1 ≈ 0.042

αR
2 ≈ 0.069

αL
2 ≈ 0.073

Mean 80.66

0.819 0.181
0.205 0.795


α∗

1 ≈ 0.147 α∗

2 ≈ 0.089

cross-validation for each subject. This result is shown in the second
column of Table 1.

The mean classification rate is 80.66%, which as mentioned
before is similar to the accuracy reached by other researchers.
Column 3 of Table 1 shows the confusion matrices, where the false
positive rate (α1) and the false negative rate (α2) are given in the
upper right and lower left entries respectively. Column4 shows the
values of αR

1 and αL
1 and column 5 that of αR

2 and αL
2. For i ∈ {1, 2},

the values of α∗

i in columns 4 and 5 are the mean across subjects
of the relative difference between αR

i and αL
i . More precisely

α∗

i =
2
N

N−
n=1

|αR
(i,n) − αL

(i,n)|

αR
(i,n) + αL

(i,n)
, (7)

where N is the number of subjects and n in the subindex denotes
the subject number.We can conclude that the differences between
αL
i and αR

i for i ∈ {1, 2} are, for all subjects, relatively small and
therefore will not significantly affect the expected performance of
the adaptive method.

Fig. 5 shows the absolute values of the classifier parameters
associated with each channel for subject 1. They correspond to the
classical pattern of brain activity associated with the presence of
error-related potentials.

3.3. Task classifier: static vs. adaptive

In this section we assess the expected performance increase of
the proposed adaptive BCI in comparison to the static BCI. Ideally,
such a comparison should be done in an on-line setting, where
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Fig. 5. Absolute values of the classifier parameters for subject 1. For better
visualization the figure needs to be printed in color.

the actual output of the IErrP classifier is used to adapt the task
classifier. However since the output of the actual IerrP classifier
was not available during the reported BCI experiment, we have
done this comparison in an off-line setting, reproducing the on-line
scenario. Note that in the case of 100% IErrP detection, the off-line
setting is equivalent to the on-line one.

For task discrimination we use the MEG data of the experiment
reported in Section 3.1. The recorded data was segmented in
trials starting at the onset of arrow presentation and finishing 500
ms after the output of the device (left/right) was returned. The
data was then preprocessed as in Section 3.2, in this case for the
frequencies [8, . . . , 14] Hz.

As features for the task classifier we used the normalized power
in the posterior channels with a time window of 1500 ms starting
500 ms after arrow presentation. The choice of frequency bands
and channels of interest is based on previous work (van Gerven &
Jensen, 2009).

The static task classifier is trained in the first session and tested
in the five remaining sessions for each subject independently.
As a classifier we used the regularized logistic regression model
as introduced in Section 2. In this static scenario, alternative
classifiers such as SVMs gave comparable results.

The adaptive task classifier is initialized with the parameters
of the static classifier. That is, it is trained in session 1, and is
adapted during sessions 2–6.When the accuracy in IErrP detection
is not 100%, we consistently simulate the IErrP classifier output
by randomly generating false positives/negatives with the subject-
dependent probabilities given by the error rates shown in columns
4 and 5 of Table 1. Since different realizations of the same
experiment will return slightly different results, the presented
results are the average over 100 different realizations of the
simulated IErrP output to account for fluctuations in the adaptive
learning. These results indicate the performance improvement that
can be expected in the on-line setting.

For each subject, we chose the learning rate η in such away that
it maximized the total increase in performance. More information
on how to set the learning rate is provided at the end of this section.

Fig. 6(A) shows for every subject the performance of the
static classifier, the simulated adaptive method with realistic
IErrP misclassification rates and the adaptive method with 100%
error detection. Although there is a big variability in performance
between subjects, we can see that the adaptive classifier improves
the static classifier for all subjects in both scenarios.

In Fig. 6(B) we consider the effect of modifying the balance
between α1 and α2. Given a fixed IErrP misclassification rate
c , since c =

α1+α2
2 , we vary consistently the range of α1

and α2 between 0 and 2c. In practice, α1 and α2 cannot be
varied independently of the overall performance, so we only
consider this result as an illustration to study the behavior of the
method. To quantify the relative decrease in classification error
for fixed α1 and α2 we define errora(α1, α2) as the error in the
performance (number of incorrectly classified trials averaged over
100 realizations) of the adaptive classifier for a given α1 and α2.
Then, the relative decrease in erroneous classification is defined
as:

2
errora(2c, 0) − errora(α1, α2)

errora(2c, 0) + errora(α1, α2)
.

Fig. 6. Panel A depicts performance per subject of the static classifier, the adaptive classifier with 100% accuracy in error detection, and the simulated adaptive classifier
with αL

1 , α
R
1 , α

L
2 and αR

2 rates as given for each subject in Table 1. Subjects are sorted in ascending order of performance of the static classifier. Results on the simulated case
are averages between 100 different realizations. Panel B shows the influence on adaptive classification error when varying the false positives and false negatives rates for
subjects 2 and 4 with a fixed misclassification rate of IErrP of 20%. The x-axis represents the dependence of the misclassification rate on α1 and α2 , while the y-axis shows
the relative decrease in classification error.
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Fig. 7. Cumulative mean error and standard deviation for each session is shown as
a function of the trial number for the adaptive and the static classifier for subject 4.
Dark and light gray lines correspond to static and adaptive classifiers respectively.
The thicknesses of the lines denote standard deviations. Black vertical lines show
pauses between sessions.

Fig. 6(B) shows the results of this analysis considering c = 0.2
for subjects 2 and 4 since they are the subjects with better static
classification rates. Note that the effect of the false positives is
more damaging than that of the false negatives, and furthermore
this effect becomes more pronounced as static task classification
performance increases. These results agree with the simulations
results reported in Section 2.3.

To illustrate the behavior of the adaptive and staticmethod over
time, we define error(k, j) equal to one if trial k in test session j
was incorrectly classified and zero otherwise. Then we compute
the cumulative mean error µe and standard deviations σe in trial i
and test session j according to:

µe(i, j) =

i∑
k=1

error(k, j)

i
,

σe(i, j) =

i∑
k=1

(µe(k, j) − µe(i, j))2

i − 1
.

In Fig. 7 we show the cumulative mean performance error and
standard deviation of the static and adaptive classifier (with 100%
accurate error detection) across sessions for subject 4 versus
the trial number. Black vertical lines show the pauses between
sessions. As we can see, after a transient with high variances
and similar performance of both classifiers, the adaptive classifier
shows significantly better performance at the end of each session.
Qualitatively similar results were obtained for all subjects.

Finally, we assessed the importance of the size of the learning
rate on the performance of the adaptive classifier. Clearly, if the
learning rate is too small, adaptation is too slow and when the
learning rate is too large, the performance will decrease. This is
confirmed in Fig. 8, which shows the performance of the adaptive
classifier (with 100% accurate error detection) as a function of
the learning rate for each subject separately. We can see that,
in general, performance increases with the learning rate up to a
subject-dependent threshold where it starts to decrease (except
for the data of subject 3, which is very noisy). We observe that
setting the learning rate between [10−2, 10−1

] is a safe choice for
all subjects, but the optimal choice is subject dependent.

4. Discussion

In this article, we have demonstrated for the first time an
improvement in BCI performance using neural feedback. We have
presented our framework for a forced choice binary task using a
Fig. 8. Increase in the accuracy of the adaptive task classifier as a function of the learning rate with 100% of accuracy in error detection for all the subjects.
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linear classifier that is adapted on-line using the IErrPs as neural
feedback.

Wehave shown that the negative effect due to themisclassifica-
tion of IErrPs is mainly due to the false positives and is practically
insensitive to false negatives. One can therefore further optimize
the adaptive BCI method by biasing the IErrP classifier such as to
reduce the false positive rate at the cost of an increased false neg-
ative rate.

The impact of this work clearly depends on whether we can
accurately detect the IErrP signal or not. We have shown that
relatively high IErrP classification performance can be obtained
for all subjects. Furthermore, other researchers have reported high
stability in IErrP detection across sessions (Ferrez & Millán, 2008).

Ongoing and future work is oriented to the on-line validation
of the method, the construction of a classifier of IErrP biased to
decreaseα1 and increaseα2, and that uses features that generalize
across subjects.

It is clear that the optimal choice of learning rate is important
to obtain good results for all subjects. There exist methods that can
automatically adapt the learning rate to an optimal value thatmake
a trade-off between accuracy for stationary data (low learning rate)
and adaptivity to change (large learning rates) (Heskes & Kappen,
1991, 1992).We believe that suchmethods should be integrated in
an on-line adaptive BCI method.

The performance of the task classifier presented in this paper
is quite poor for several subjects. We believe that this poor
performance is due to a suboptimal choice of the features that we
have used, and improvement in both the static and adaptive task
classifier could be obtained using optimized features. However,
we believe that the reported increase in performance of the
adaptive classifier relative to the static classifier will still hold
with optimized features. We have tested this by training the static
classifier on all data for each subject independently, which results
in significantly higher classification rates (60%–80%). Using the
adaptive BCI procedure initialized with this static classifier on
this same data resulted in an improved classification rate for all
subjects.

An open question of considerable importance is how to gener-
alize the proposed adaptive BCI method to non-binary tasks, such
as controlling a keyboard. Such learning tasks are more complex,
since the error signal will indicate that an error has occurred, but
will not provide information on what the correct output should
have been. This type of learning paradigm is called reinforcement
learning (Sutton & Barto, 1998; Rescorla, 1967; Dayan & Abbott,
2001). An important future research direction is to integrate these
reinforcement learning methods in on-line adaptive BCI.
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Appendix. Effect of unbalanced IErrP classification

We show here that unbalanced classification of the IErrP only
degrades the performance of the proposedmodel for very extreme
cases. Following the notations of Section 2.3, we consider ρ = 2
(distance between the mean of the distributions), α1 = α2 = 0.15
(false positive/negative rates) andwe vary, for i ∈ {1, 2}, the values
of αL

i and αR
i consistently with (6).

Fig. A.9 shows the error in performance in the z-axis while the
x- and y-axes represent the effect of left and right user intention in
α1 and α2 respectively. The center in this axis represents balanced
IErrP classification, i.e αL

i = αR
i for i ∈ {1, 2}, while Left or Right
Fig. A.9. Classification error with ρ = 2 and α1 = α2 = 0.15 as a function of αL
1 ,

αR
1 , α

L
2 and αR

2 . For better visualization the figure needs to be printed in color.

indicate a total bias on α1 (horizontal axis) or α2 (vertical axis)
towards that direction.

First, we see that the best performance is reached in the
balanced case, and that the effect caused for unbalanced α2 is less
severe than that for unbalanced α1. Further, the worst case occurs
when false positives and negatives are unbalanced oppositely (see
lower right andupper left corners). However, only in these extreme
cases is this effect significant. We experienced that in all cases
the method converges to a boundary close to the one obtained in
the balanced case and further we obtained qualitatively the same
results for different values of ρ.
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