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ABSTRACT
Monte Carlo sampling can be used to estimate the solution of path integral control problems, which are
a restricted class of nonlinear control problems with arbitrary dynamics and state cost, but with a linear
dependence of the control on the dynamics and quadratic control cost. Although importance sampling is
used to improve numerical computations, the effective sample size may still be low or many samples could
be required. In this work, we propose a method to learn effective state-feedback controllers for nonlinear
stochastic control problems based on multilevel importance samplers. In particular, we focus on the ques-
tion of how to compute effective importance samplers considering a multigrid scenario. We test our algo-
rithm in finite horizon control problems based on Lorenz-96modelwith chaotic and non-chaotic behaviour,
showing, in all cases, that our multigrid implementation reduces the computational time and improves the
effective sample size.

1. Introduction
When the system dynamics is linear and the cost is quadratic
(LQ control), the solution of the stochastic control problem is
given in terms of a number of coupled ordinary differential
equations that can be solved efficiently (Stengel, 1993). Although
LQ control is useful in some situations, it is a linear theory and
it does not allow to model complex systems. However, there is
a class of continuous nonlinear stochastic control problems that
can be solved more efficiently than the general case (Kappen,
2005). These are control problems with a finite time horizon,
where the control acts linearly and additive on the dynamics and
the control cost is quadratic. These control problems are essen-
tially reduced to the computation of a path integral. Since path
integrals involve an expected value with respect to a dynami-
cal system, the optimal control can be estimated by usingMonte
Carlo (MC) sampling. In order to efficiently compute the opti-
mal control, samples might be generated from a different dis-
tribution by importance sampling (IS). It has also been shown
an intimate relation between optimal IS and optimal control
(Thijssen & Kappen, 2015). The optimal control solution is
related with the optimal sampler, and better samplers in terms of
effective sample size (ESS) are also better controllers in terms of
control cost. This allows to iteratively improve the importance
sampler.

Theweakness ofMC simulation is that its computational cost
can be very high; in particular, this is the case when each sample
might require many time steps. In order to improve the compu-
tational efficiency, Giles introduced the multilevel Monte Carlo
(MLMC) method (Giles, 2008). This method considers a geo-
metric sequence of time discretisations (grids). On the coarsest
grid, the accuracy of the approximate solution of a partial dif-
ferential equation and its computational cost are low. On the
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other hand, on a finer grid, its accuracy is greater, but so is
its cost. The multigrid approach of MLMC combines the solu-
tion for all levels in a clever manner reducing the total com-
putational cost and the estimate variance. Since MLMC esti-
mator involves independent MC estimators at each grid level,
IS for each level can be considered independent on the oth-
ers. This feature and the fact that IS estimators are unbiased
give some freedom about how to implement IS for the MLMC
method. For instance, the same importance sampler can be con-
sidered for all levels, or each level may have its own importance
sampler.

In this work, we discuss how to implement efficiently multi-
level IS on the computation of effective controllers. In particu-
lar, we show that implementations using the same importance
sampler for all levels give more accurate controller updates; and
implementations considering an importance sampler for each
level contribute with fast controller updates at the early iteration
steps.

In the next sections, we review path integral control theory
in the finite horizon case, the cross entropy method as method
for adaptive IS and the MLMCmethod. Subsequently, we intro-
duce two algorithms for applying IS to MLMC and test their
efficiency in the search of an optimal controller. In particu-
lar, we apply our algorithms to particle smoothing problems
considering dynamical systems based on Lorenz-96 model and
one observation. Motivated by our results, we propose a com-
bined algorithm, which has a much better performance than
MC, to estimate solutions of path integral control problems.
A significant increase in the final ESS and a reduction of the
CPU time are the reasons that make our combined algorithm
a powerful tool to find better samplers; and therefore, better
controllers.
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2. Path integral control
Consider the dynamical system

dX (t ) = f (t,X (t ))dt + g(t,X (t )) [u(t,X (t ))dt + dW (t )] ,
(1)

for t0 � t�Twith initial conditionX(t0)= x0, whereX (t ) ∈ R
n,

f (t,X (t )) : [t0,T ] × R
n → R

n, g(t,X (t )) : [t0,T ] × R
n →

R
n×m, u(t,X (t )) : [t0,T ] × R

n → R
m and dW(t) is an

m-dimensional Gaussian noise with E[dW (t )] = 0 and
E[dW (t )dW (t̂ )] = νdtδ(t − t̂ ), here ν is an m × m posi-
tive definite covariance matrix, and δ is Dirac’s function. Given
a function u(t, x) that defines the control for each state x at each
time t � [t0, T], the cost function, S, is defined by

S(t, x, u) = 1
λ

(
�(X (T )) +

∫ T

t

(
V (s,X (s))

+ 1
2
u(s,X (s))′Ru(s,X (s))

)
ds

+
∫ T

t
u(s,X (s))′RdW (s)

)
, (2)

where t and x are the current time and state and ′ denotes trans-
pose. The cost function consists of an end cost, �(x), that gives
the cost of ending in the configuration x, and a path cost that is
an integral over the time trajectories. In this work, we consider
� andV to be bounded from below and piecewise-defined func-
tions. In this case, ν and R are related by λI = Rν, with λ > 0 a
scalar (Kappen, 2005).

The main goal is to find the optimal control, u∗, that min-
imises the expected cost:

J(t, x) = minu E[S(t, x, u)],
u∗ = argminu E[S(t, x, u)], (3)

where E denotes the expected value with respect to the stochas-
tic problem from Equation (1) with initial condition X(t0) =
x0 and control u. The optimal cost-to-go, J(t, x), is the opti-
mal cost for any intermediate time t until the fixed end time
T, starting at any intermediate state x. The optimal cost-to-go
satisfies a partial differential equation known as the stochas-
tic Hamilton–Jacobi–Bellman equation, whose solution, in the
particular case of path integral control problems, is given
by the following theorem, proved by Thijssen and Kappen
(2015):

Theorem 2.1: The solution of the control problem specified by
Equation (3) is given by

J(t, x) = − log(ψ(t, x)), (4)

u∗(t, x) = u(t, x) + lim
s→t

1
s − t

E[dW (s) exp(−S(t, x, u))]
E[exp(−S(t, x, u))]

,

(5)

where ψ(t, x) = E[exp(−S(t, x, u))].

Theorem 2.1 not only gives an expression to obtain the opti-
mal control solution, u∗, it also shows that we can use any func-
tion u to compute it. In order to solve the control problem
numerically, we need to estimate the expected values in Equa-
tions (4) and (5). In general, the easiest way to do it is by MC
sampling.We refer to the controlu as the sampling control, when
implementing numerical computations. Of course, the choice of
u affects the efficiency of MC sampling. Thus, it is very impor-
tant to choose an appropriate sampling control and iteratively
improve it, otherwise the efficiency of MC sampling would be
very poor.

In order to improve the sample efficiency, we can use IS. Con-
sider the probability distribution p(x) and suppose that we are
interested in the expected value of γ (x), i.e. we want to estimate
the quantity:

Ep[γ (X )] =
∫

�

γ (x)p(x)dx,

where � represents the support of p. The naive MC estimator is
given by

γ̂ = 1
N

N∑
i=1

γ (X (i)),

where the N samples are drawn from p. If p does not have much
weight on the support of γ (x), only a few samples will contribute
to the computation of the estimator. However, we can consider
another distribution q(x) with support ϒ, such that � � ϒ, and
such that q hasmuchmore weight on the support of γ (x) than p.
The expected value Ep[γ (X )] can be expressed in terms of q(x)
by

Ep[γ (X )] =
∫

ϒ

γ (x)
p(x)
q(x)

q(x)dx = Eq

[
γ (X )

p(X )

q(X )

]
, (6)

and its MC estimator, which is also unbiased, is

γ̂ = 1
N

N∑
i=1

γ (X (i))
p(X (i))

q(X (i))
,

where the N samples are now drawn from q. The basic idea of
IS is to sample from a different distribution to reduce the vari-
ance of the estimator Ep[γ (X )] or because sampling from p is
difficult (for instance, in Section 4, we use IS because we do not
know the optimal distribution p∗ explicitly). The ratio p(x)/q(x)
is referred to as Radon–Nikodymderivative. An importantmea-
sure of the efficiency of applying IS using q is the normalisedESS,
that is defined by ESS = 1/(1 + Vq[p(X )/q(X )]) (Kong, 1992;
Liu, 1996). The optimal importance sampler has zero variance,
its ESS is one, and it is given by

q∗(x) = γ (x)p(x)
E[γ (X )]

.
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However, we cannot use it in practice, since it requires prior
knowledge of E[γ (X )], which is the quantity we want to com-
pute. Nevertheless, our main goal is to give a numerical expres-
sion for Equations (4) and (5), i.e. we want to compute good
estimators for the expected values in those equations by sam-
pling from an efficient sampling control u. Although finding the
optimal control and themost efficient sampling control seems to
be two different problems, Thijssen and Kappen (2015) proved
that the best control in terms of optimal control is also the best
control in terms of sampling control. In the next section, we
review the construction of an adaptive algorithm to find an effec-
tive controller.

3. Path integral control and cross entropymethod
In this section, we review the cross entropy method. The results
shown in this section have already been discussed by Kappen
and Ruiz (2016), but we decided to include them with the pur-
pose of having a self-contained article. In order to apply the cross
entropy method (de Boer, Kroese, Mannor, & Rubinstein, 2005)
to the path integral control theory, it is necessary to reformu-
late the control problems in terms of a Kullback–Leibler (KL)
divergence. In the limit dt → 0, the conditional probability of
X(t + dt) given X(t) is a Gaussian with mean μt = X(t) + f(t,
X(t))dt+ g(t,X(t))u(t,X(t))dt and variance
tdt= g(t,X(t))νg(t,
X(t))′dt. Therefore, the conditional probability of a trajectory
τ = Xt0:T |x0 with initial state X(t0) = x0 is given by

pu(τ ) = p0(τ ) exp
(∫ T

t0
−1
2
u(t,X (t ))′ν−1u(t,X (t ))dt

+
∫ T

t0
(dX − f (t,X (t ))dt )′
−1

t g(t,X (t ))u(t,X (t ))
)

,

(7)

where p0 is the distribution over trajectories for the uncontrolled
dynamics (Kappen, Gómez, & Opper, 2012; Kappen & Ruiz,
2016). The quadratic control cost in the path integral control
problem represented by Equation (3) can be expressed as a KL
divergence by combining Equations (3) and (7). Thus,

J(t, x) = minu E[S(t, x, u)]

= minu
∫
pu(τ )

(
log

(
pu(τ )

p0(τ )

)
+ V̂ (τ )

)
, (8)

where V̂ = 1/λ(�(X (T )) + ∫ T
t0 V (t,X (t ))dt ). Since there

is one-to-one correspondence between u and pu, we can
replace the minimisation with respect to u by a minimisa-
tion with respect to pu subject to the normalisation constrain
�pu(τ )dτ = 1. Taking this minimisation, the optimal solution,
p∗, can be expressed in terms of pu, (by using Equation (7) to
relate p0 with pu), as follows:

p∗(τ ) = 1
ψ(t, x)

pu(τ ) exp(−S(t, x, u)). (9)

Although we have an expression for the optimal solution, we
cannot compute it, because it would require prior knowledge
of ψ(t, x) = E[exp(−S(t, x, u))]. However, we can compute a
near-optimal control û, such that pû is close to p∗. Following the

cross entropy method, we minimise the KL divergence

KL(p∗|pû) ∝ −Ep∗ log(pû),

∝ Ep∗

[∫ T

t0

1
2
û(t,X (t ))′ν−1û(t,X (t ))dt

− (dX − f (t,X (t ))dt )′
−1
t g(t,X (t ))û(t,X (t ))

]
,

∝ 1
ψ(t, x)

Epu

[
exp(−S(t, x, u))

×
∫ T

t0

(
1
2
û(t,X (t ))′ν−1û(t,X (t ))

−
(
u(t,X (t )) + dW (t )

dt

)′
ν−1û(t,X (t ))

)
dt

]
,

(10)

with respect to the functions ût0:T = {û(t,X (t )), t0 ≤ t ≤ T}.
In order to obtain the final expression of Equation (10), we have
discarded the constant terms and expressed the expectationwith
respect to the optimal distribution p∗ controlled by u∗ in terms
of an arbitrary distribution pu controlled by u. In particular, we
have usedEquation (7) (withu = û) andEquation (9) (to change
Ep∗ by Epu) in the second and last lines, respectively. In the last
step, we have used IS due to the fact that we cannot compute
the expected value under the unknown distribution p∗, but it is
possible to do it under pu, for any arbitrary u.

We can compute the gradient of the KL divergence assuming
that û is a parametrised function with the parameter θ . Thus,

∂KL(p∗|pû)
∂θ

=
〈 ∫ T

t0

(
û(t,X (t )) − u(t,X (t )) − dW (t )

dt

)′

× ν−1 ∂ û(t,X (t ))
∂θ

dt
〉
u
, (11)

where we have introduced the notation 〈F〉u =
ψ(t, x)−1

Epu[exp(−S(t, x, u))F]. The equation above rep-
resents the gradient in the point û(t,X (t )) for an arbitrary u(t,
X(t)). Since the KL divergence is a nonlinear function of θ , we
can minimise it by using a gradient-based procedure. Thus, we
expect that û(t,X (t )) improves in each iteration and since a
better control in terms of optimal control is also a better control
in terms of sampling control (Thijssen & Kappen, 2015), its
current estimated value is a good candidate for u(t, X(t)). In this
case,

∂KL(p∗|pû)
∂θ

= −
〈∫ T

t0
dW (t )′ν−1 ∂ û(t,X (t ))

∂θ

〉
û
, (12)

and the gradient descent update at iteration n is given by

θn+1 = θn − η
∂KL(p∗|pû)

∂θn

= θn + η

〈∫ T

t0
dW (t )′ν−1 ∂ û(t,X (t ))

∂θ

〉
û
, (13)

with η > 0 a small parameter.
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4. MLMC and IS
MLMC method combines MC path simulations with different
time steps through a telescopic sum. It was introduced by Giles
to be applied to a variety of financial models (Giles, 2008). Here
we include the main theorem of Giles’ work, which is quite gen-
eral; and we keep his notation. Afterward, we identify the func-
tionals that appear at the main theorem with the functionals we
are interested in, i.e. the functionals that are present in our adap-
tive algorithm (Equation (13)). Although we include the most
important information for our work, we suggest readers to con-
sult Giles’ paper for more specific details about MLMCmethod.

According to Section 3 of Giles (2008), let hl = h0/Ml, l
= 0, 1, …, L be the time step for level l, where h0 corre-
sponds to the initial discretisation. Thus, the MLMC theorem
states:
Theorem 4.1: Let P denote a functional of the solution of the
stochastic differential equation (1) for a given Brownian pathW(t)
and let P̂l denote a corresponding approximation using a numeri-
cal discretisation with time step hl.

If there exist independent estimators Ŷl based on Nl MC sam-
ples, and positive constants α � 0.5, β, c1, c2 and c3, such that

(1) E[P̂l − P] ≤ c1hα
l

(2) E[Ŷl] =
{
E[P̂0], l = 0
E[P̂l − P̂l−1], l > 0

(3) V[Ŷl] ≤ c2N−1
l hβ

l
(4) Cl the computational complexity of Ŷl , is bounded byCl ≤

c3Nlh−1
l ,

then there is a constant c4 such that for any ϵ < e−1, there
are values L and Nl for which the multilevel estimator Ŷ =∑L

l=0 Ŷl has a mean square error (MSE) with bound MSE ≡
E[(Ŷ − E[P])2] < ε2, with a computational complexity C with
bound

C ≤

⎧⎪⎨
⎪⎩
c4ε−2, β > 1
c4ε−2(log(ε))2, β = 1
c4ε−2−(1−β)/α 0 < β < 1

The simplest estimators Ŷl are given by the means ofNl inde-
pendent samples. Thus,

Ŷ0 = 1
N0

N0∑
i=1

P̂(i)
0 , and Ŷl = 1

Nl

Nl∑
i=1

(
P̂(i)
l − P̂(i)

l−1

)
, (14)

with l = 1, …, L. It is important to remark that the quantity
P̂(i)
l − P̂(i)

l−1 comes from two discrete approximations with differ-
ent time steps, but the same Brownian path. Observe that they
are not the sameBrownian paths for all l, they are different Brow-
nian paths for each Ŷl , i.e. P̂(i)

l comes from a discrete approxi-
mation with a given Brownian path for the computation of Ŷl ,
but with a different Brownian path for Ŷl+1, (see Giles, 2008). In
order to equilibrate statistical and spatio-temporal discretisation
errors, the number of samples on mesh level l is related with the
number of samples of level L (Giles, 2008; Šukys, 2014) by the

following equation:

Nl = NLM(β+1)(L−l)/2. (15)

UsingMLMCand anEuler scheme to solve the involved stochas-
tic differential equation, the computational complexity and the
variance are reduced (in comparison to those for MC), leaving
unchanged the bias due to the Euler discretisation. Although
MLMC reduces the variance and the computational complex-
ity, it does not solve the problem of sample efficiency. However,
we can combine MLMC with IS.

In this work, Equation (13) represents the main step of
our adaptive algorithm, which updates the sampling control.
At each adaptive step, we have a different sampling control
and, therefore, a different distribution q(x) for applying IS.
In our particular case, p and q from Section 2 are related
with p∗ and pû from Section 3, respectively; and our func-
tional, P, is

∫ T
t0 dW (t )′ν−1∂ û(t,X (t ))/∂θ . From Equation (9),

we know that the Radon–Nikodym derivative is given by
exp(−S(t, x, û))/ψ(t, x). Since in a numerical approach, the
Radon–Nikodym derivative depends on the control û as well as
on the discretisation, we denote it as rû,l , when using the dis-
cretisation of level l.

There are two obvious ways to implement the gradient
descent update using MLMC and IS; it can be done updating all
the levels at the same time, or updating each level independently.
In both cases, the telescopic sum, that is involved in MLMC,
remains valid due to the IS unbiased estimators.

If we implement IS through all the levels at the same time, the
MLMC estimator is given by

ŶIS,L = 1
N0

N0∑
i=1

P̂(i)
0 r(i)û,0 +

L∑
l=1

1
Nl

Nl∑
i=1

(
P̂(i)
l r(i)û,l − P̂(i)

l−1r
(i)
û,l−1

)
.

(16)

In other words, we compute the expected value in Equation (13)
using all levels of discretisation, and then we update the control
parameters. This is presented with more detail in the pseudo-
code Algorithm 1. In this case, the same controller û is used to
sample at all levels.

Algorithm 1.MLMC and IS updating all levels at the same time
Require: Dynamic equation (i.e. Equation (1)), S(t, x, u), û (i.e.

θ1 and h(t, x)),M, L, Nmax, ζ , NL
while n < Nmax or �ESS < ζ do
PerformMLMC until level L, withNLM(β+1)(L−l)/2 samples
at level l = 0 · · · L
Compute E[P0rû,0], V[P0rû,0], E[Plrû,l − Pl−1rû,l−1] and

V[Plrû,l − Pl−1rû,l−1] for l = 1 · · · L
Compute E[P] = E[P0rû,0]+

∑L
l ′=1E[Pl ′rû,l ′ − Pl ′−1rû,l ′−1]

Compute V[P] = V[P0rû,0]+
∑L

l ′=1V[Pl ′rû,l ′ − Pl ′−1rû,l ′−1]
Update the control û : θn+1 ← θn + ηE[P]

end while

Algorithm 1 computes all updates with the finest resolution;
it means, the expected values that are involved in the update step
are computed considering a telescopic sum until the finest grid,
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i.e. level L (see Equation (16)). However, during the first itera-
tion steps, we might be far away of the optimal solution, and,
therefore, having a very accurate update may not be necessary.
We can take advantage of the facts that MLMC considers dif-
ferent levels of discretisation with Nl independent samples at
each level, and IS estimators are unbiased, by implementing IS
independently at each grid level. We propose to use the itera-
tion update (Equation (13)), first using IS for the coarsest levels
only and for the finer levels later.We initially do IS for levels zero
and one only, computing the control on the level one discretisa-
tion. Once we obtain a non-significant increase in the ESS, we
set the time discretisation for the control update to level two,
initialised with the current control solution. We can iterate this
action at different levels: as soon as we obtain a non-significant
increase in the ESS at level l, we reduce the time discretisation of
the control update to level l + 1, initialised with the level l con-
trol solution. Thus, in this case, theMLMCestimator at levelL is
given by

ŶIS,L = 1
N0

N0∑
i=1

P̂(i)
0 r(i)u1,0 +

L∑
l=1

1
Nl

Nl∑
i=1

(
P̂(i)
l r(i)ul ,l

− P̂(i)
l−1r

(i)
ul ,l−1

)
,

(17)

where L = 1, 2, . . . , L and ul corresponds to the last û that
has been found, when doing iterations for level l. This imple-
mentation is described with more detail in the pseudo-code
Algorithm 2.

Although we assume that the control is parametrised by K
basic functions hk(t, x), k = 1, …, K, i.e. û = ∑K

k=1 θkhk(t, x),
for simplicity, we suppress the k index in the pseudo-codes
being û = θh(t, x). Thus, the sub- and supra-index in θ indicate
the update steps and the level where the update is performed,
respectively. As stop criteria, we consider a maximum number
of iterations Nmax , that in Algorithm 2 it may also depend on l;
or a non-significant increase in the ESS.

When performing MLMC until level L, the number of sam-
ples at level l is related with NL by Equation (15). These amount
of samples are necessary to ensure that the square root of the
estimated variance of the combined multilevel estimator has
a superior bound similar to that for the bias, O(hL). Since
only levels zero and one are considered in the first step of
Algorithm 2, i.e. the final discretisation is h1 instead of hL, we
can use less samples. In particular, we use Nupdate samples for
level one andNupdateM(β + 1)/2 samples for level zero, withNupdate
<N1. However, for the telescopic sums that are involved at levels
l> 1, these amounts of samples are not enough; thus, once when
we get the final expression for the control u at level one, we need
to perform N0 and N1 samples at levels zero and one, respec-
tively. The fact that the number of samples can be reduced at the
early iteration steps is one of themain advantages ofAlgorithm 2
especially when β > 1.

In the next section, we analyse and compare the perfor-
mances of MC, and Algorithms 1 and 2 when they are applied
to finite horizon control problems based on Lorenz-96 model
(Lorez, 1996). In general, Algorithm 1 reaches the maximum
ESS value and Algorithm 2 performs faster than the others. In
fact, if we combine Algorithms 1 and 2, we obtain the best per-
formance in time and ESS.

Algorithm 2.MLMC and IS independently at each level
Require: Dynamic equation (i.e. Equation (1)), S(t, x, u), û (i.e.

θ1
1 and h(t, x)),M, L, Nl

max, Nupdate, ζ , NL
for l = 1 to L do
while n < Nl

max or �ESS < ζ do
if l = 1 then
Perform MLMC at levels zero and one with
NupdateM(β+1)/2 and Nupdate samples, respectively
Compute E[P0rû,0], V[P0rû,0], E[P1rû,1 − P0rû,0] and
V[P1rû,1 − P0rû,0]

else
PerformMLMCat level l, withNLM(β+1)(L−l)/2 samples
Compute E[Plrû,l − Pl−1rû,l−1] and V[Plrû,l −
Pl−1rû,l−1]

end if
Compute E[P] = E[P0ru1,0] + ∑l−1

l ′=1 E[Pl ′rul′ ,l ′ −
Pl ′−1rul′ ,l ′−1] + E[Plrû,l − Pl−1rû,l−1]

Compute V[P] = V[P0ru1,0] + ∑l−1
l ′=1 V [Pl ′rul′ ,l ′ −

Pl ′−1rul′ ,l ′−1] + V[Plrû,l − Pl−1rû,l−1]
Update the control û at level l: θ l

n+1 ← θ l
n + ηE[P]

end while
if l = 1 then
u1 ← û
Perform MLMC at levels zero and one with N0 =
NLM(β+1)L/2 and N1 = NLM(β+1)(L−1)/2 samples, respec-
tively
Compute E[P0ru1,0], V[P0ru1,0], E[P1ru1,1 − P0ru1,0] and

V[P1ru1,1 − P0ru1,0]
θ l+1
1 ← θ l

n+1
else
ul ← û
Perform MLMC at level l, with Nl = NLM(β+1)(L−l)/2

samples
Compute E[Plrul ,l − Pl−1rul ,l−1] and V[Plrul ,l −
Pl−1rul ,l−1]
θ l+1
1 ← θ l

n+1
end if

end for

5. Numerical examples
In this section, we apply our algorithms to a set of finite hori-
zon control problems. In particular, we illustrate the path inte-
gral cross entropy method for particle smoothing, considering
a noisy observation and proceeding as Kappen and Ruiz did
(Kappen & Ruiz, 2016; Ruiz & Kappen, 2017). Particle smooth-
ing method is used for inference of stochastic processes, given
noisy observations, i.e. it reconstructs latent time series from
observations. In order to apply it here, we generate some data
from the Lorenz-96 model (Lorez, 1996) and try to reconstruct
the involved time series. We consider one observation only, but,
of course, the procedure is valid for many observations as well.

Lorenz-96 model was originally introduced to describe the
weather at mid-latitude circles considering κ discrete sectors
and a continuous dynamics in time. This system may present
chaotic behaviour and it has been analysed for different dimen-
sions and external forces by Karimi and Paul (2010). In this
work, we consider the dynamics of a periodic lattice of κ

2780 S. A. MENCHÓN AND H. J. KAPPEN



Figure . ESS vs. CPU time for Algorithm  (A), and Algorithm  (B and C), considering the dynamic equation () with κ =  and F = . For panel B, Nupdate = N, and for
panel C Nupdate = /hESS. The algorithms were performed with:M= , L= , dashed black lines;M= , L= , solid grey lines;M= , L= , solid black lines. Vertical lines
correspond to the end of the first loop in Algorithm , where the level is increased for (,), dotted black lines; (,), dotted grey lines; and (,), dashed-dotted black lines.
All these realisations have the same initial and final discretisations, h = . and hL = h/M

L , respectively.

coupled variables, Xk(t), with k = 1, …, κ , where the dynam-
ics of the kth variable is given by

dXk(t ) = ((Xk+1 − Xk−2)Xk−1 − Xk + F + uk(t,X (t ))) dt
+ dWk, (18)

where F represents a constant external driving, X−1 = Xκ ,
X−2 =Xκ − 1, andXκ + 1 =X1. In order to apply particle smooth-
ing method, we define the cost function by

S(t0, x, u) = 1
λ

(
Q||X (T ) − xobs||2

+
∫ T

t0

(
1
2
u(s,X (s))′Ru(s,X (s))

)
ds

+
∫ T

t
u(s,X (s))′RdW (s)

)
, (19)

where now u(t,X (t )) : [t0,T ] × R
κ → R

κ , dW(t) is an
κ-dimensional Gaussian noise, and the end cost, �(x), is given
by Q||X(T) − xobs||2, with Q constant and xobs the observation.

In order to generate an observation, we integrate the uncon-
trolled and noiseless dynamics from t0 = 0 until T= 1, with ini-
tial condition x0. Our ‘observation’ is obtained by adding white
Gaussian measurement noise, N (0, 0.5), to the final state. To
ensure that all transients have decayed, the initial condition x0 is
defined as the final state after integrating forward for 1000 time
units the uncontrolled and noiseless dynamics from random ini-
tial conditions. We have performed simulations for a huge vari-
ety of parameters, κ and F and for all of them α � 1 and β �
2.

We start analysing the systemwith F= 5 andK= 5. For these
parameters, the systemdoes not have chaotic behaviour.We per-
formed simulations with different pairs (M, L) in such a way all
of them have the same final discretisation. In Figure 1(A), we
show the ESS versus the CPU time when we used Algorithm 1

for (2,6 – dashed black line), (4,3 – solid grey line), (8,2 – solid
black line) with h0 = 0.1. We observe that the initial improve-
ment of the ESS is similar for all schemes, but that adding more
levels between the coarsest and finest discretisation significantly
improves the asymptotic efficiency.

If instead we apply Algorithm 2, the simulations are per-
formed faster, but we obtain, in general, less ESS. This is shown
in Figure 1(B) for (2,6 – dashed black line), (4,3 – solid grey line),
and (8,2 – solid black line), with h0 = 0.1 and Nupdate = N1. We
observe that the initial increase of the ESS is significantly faster
for Algorithm 2 than for Algorithm 1. However, its asymptotic
performance is significantly worse. Vertical lines indicate the
times at which the computation changes from level l to l+ 1 (first
loop of Algorithm 2, see pseudo-code).

As we expressed above, when only levels zero and one
are considered, the discretisation error due to bias is O(h1)
instead of O(hL). Thus, we can consider Nupdate�1/(h1ESS0),
where ESS0 is an estimated initial ESS (we took it ∼5 ×
10−4). Figure 1(C) shows the simulations that were performed
using Algorithm 2 for (2,6 – dashed black line), (4,3 – solid
grey line), and (8,2 – solid black line), with h0 = 0.1 and
Nupdate = 1/(h1ESS0). We observe that initially there is a good
ESS improvement and that asymptotic ESSs have similar values
for Figure 1(B,C), supporting the fact that we can use the pro-
posed Nupdate instead of N1.

In order to implement our stopping criterion, �ESS < ζ , we
defined a minimum number of iteration at each level; for itera-
tions beyond this minimum, we computed the relative variation
of the ESS in a window of 10 iterations, and we asked this to be
less than 30%.

TheRadon–Nikodymderivative that is involved in both algo-
rithm is given by exp(−S(t, x, û))/ψ(t, x), where ψ(t, x) =
E[exp(−S(t, x, û))] has to be estimatedwhen implementing the
numerical computation. Since Algorithm 1 always considers L
grid levels, the estimation of ψ(t, x), and thus the update, are
always better than those for Algorithm 2 that takes into account
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Figure . ESS vs. CPU time for a combined algorithm (black lines), andMC (grey lines), considering the dynamic equation () with: κ = , F=  (A); κ = , F=  (B); κ = ,
F=  (C); and κ = , F=  (D). All MLMC realisations have the same initial and final discretisations, h = . and hL = h/M

L , respectively. The time step for MC realisations
is hL .

L(≤ L) grid levels. Thus, since Algorithm 1 is more accurate
and Algorithm 2 is faster, we propose a combined algorithm,
implementing Algorithm 2 first, and then Algorithm 1. In this
way, a good controller is obtained faster, and later the ESS is
improved.

In Figure 2, we show the results of applying a combined algo-
rithm (black) and standardMC (grey), for different F and κ val-
ues. In these particular cases, we have chosen to implement first
Algorithm 2withM= 4 and L= 3 and thenAlgorithm 1withM
= 2 and L= 6. Similar results are also obtained for other choices
ofM and L when performing Algorithm 2. Our combined algo-
rithm is clearly much more effective and has less fluctuations
than MC, even when the system presents chaotic behaviour.
The ESS that is reached with the combined algorithm for F =
5 and K = 5, (Figure 2(A)) is the same than that when using
onlyAlgorithm 1 (Figure 1(A)); however, it takesmuch lessCPU
time with the combined algorithm. We have implemented all
algorithms considering a control parametrised by the following
functions: uk = ak + b′

kXt + c′kXt
2, where ak ∈ R, bk, ck ∈ R

κ .
A more complex controller will lead to higher sampling effi-
ciency, which also depends on the discretisation.

6. Conclusions
Theorem 2.1 gives an expression for the optimal control, u∗(t,
x), in terms of any sampling control, that can be estimated
by MC sampling. Of course, the efficiency of the sampling
strongly depends on the sampling control. This efficiency can

be improved by using IS; but even then, the number of samples
that are requiredmay be large and initially it can take a long time
to obtain a workable ESS.

The estimation of the optimal control, through Theorem 2.1,
involves the computation of expected values. It has been shown
that theMLMCmethod has less computational complexity than
MC giving significant computational savings. IS can be applied
in different ways, since MLMC considers different levels of dis-
cretisation with independent samples at each level, and IS esti-
mators are unbiased. In particular, an improvement in the sam-
pling control can be obtained evenwith a poor discretisation due
to the variance reduction throughMLMC.This can be improved
by adding a level of discretisation and implementing IS inde-
pendently at the newmesh level. This procedure has two advan-
tages: (1) at the very initial steps, when nothing is known about
a good sampling control and the ESS is too small, a very accu-
rate improvement of the sampling control may not be neces-
sary; thus, a rough approximation with a coarse discretisation
is enough to determine the right direction to take in the gradi-
ent descent procedure (Equation (13)); (2) if β < 1, the lowest
levels of MLMC are the cheapest in computational cost; and if
β � 1, since the initial discretisation is poor, at the first steps of
Algorithm 2, less samples can be done, reducing also the compu-
tational cost. For these reasons, Algorithm 2 is the fastest. Nei-
ther of these advantages are present in Algorithm 1, since the
final discretisation is considered for all steps and it is not possi-
ble to reduce the number of samples.However, it estimates better
the involved Radon–Nikodymderivatives and, therefore, it gives

2782 S. A. MENCHÓN AND H. J. KAPPEN



a better asymptotic ESS. Thus, a combined algorithm that starts
using the advantages of Algorithm 2 and then implement a few
steps of Algorithm 1 is the best option to obtain a good ESS with
less computational time.

Nevertheless, bothAlgorithms 1 and 2 give better results than
MC with IS (see Figure 2). It is worth to note that the ESS also
depends on the discretisation, and thus the comparison between
MLMC and MC for levels l < L is not fair. Indeed, if when per-
forming Algorithm 2, the ESS were computed with the sampling
control of level L(≤ L), but considering the discretisation of
level L, this ESS will be always better than that for MC (results
are not shown).

In summary, the implementation of IS independently at each
mesh level in the MLMC algorithm gives a speed-up and per-
forms much better than MC. Even more, a combination of both
algorithms not only gives a better ESS thanMC at the same com-
putational time, it also reaches a larger asymptotic ESS.
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