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1 Introduction

“Do we need computerised Diagnostic Decision Support Systems in medical prac-
tice?”

Problems in modern medicine are often very complex, and evidence for the
best choice to be made is often lacking. Decisions made by physicians are
arbitrary and highly variable (within one physician and between physicians)
and lacking explanation or “rationalisation” [1, 2]. Clinical examples of this
phenomenon in diagnosis making are abundant.

The body of potentially useful knowledge that is relevant to even a relatively
narrow diagnostic area may be too large to make the optimal (diagnostic) deci-
sion on the spot. Ironically, modern information technology (especially through
the Internet) further increases the amount of available knowledge, potentially
even further complicating this situation. Moreover, individual patients need “in-
dividualised” decisions, because their characteristics differ from the “average”
and because of their individual wishes [3]. Apparently, individualising the gen-
eral results of research may be cumbersome and time consuming, while on the
other hand, modern medical practice demands for efficiency, cost-effectiveness
and high technical quality.

The derivation of diagnostic protocols is a main problem in health care. In
some environments diagnostic support as proposed in this proposal is not likely
to influence physician’s decisions, e.g. on a neurological intensive care unit, since
the diagnosis is often obvious [4]. In contrast, general internal medicine covers
an enormous range of, sometimes relatively rare, diagnostic categories. Hence
the tendency of medicine to be divided in superspecialties. A diagnostic decision
support system covering general internal medicine may be appreciated by both
generalists and super-specialists alike: by the generalist because this field of
work typically covers a very broad range of diagnoses, by the super-specialist
because he/she may not feel completely at ease outside his/her specific field of
expertise.

It is readily understandable that the above comprises an enormous task and
challenge for modern medicine in general and individual doctors in particular,



illustrating the need for decision support techniques. Obviously, computerised
decision aids may be very promising from a theoretical point of view. However,
the currently available systems have not yet been very successful and certainly
their use is still not widespread and not established in daily routine.

A variety of reasons may be responsible for this:

e Lack of accuracy:
Those current systems that intend to cover a broad diagnostic domain of
medicine [5, 6] generally lack diagnostic accuracy. This is mainly due to
the levels of detail [7] (e.g. diagnostic categories at the level of ICD-10
[8]) and completeness in the knowledge base. In contrast, systems that are
based on detailed modelling of knowledge, resulting in good performance,
are restricted to a relatively narrow field [9, 10].

o Lack of transparency:

In the era of evidence based medicine the advise of “a machine”, function-
ing as a black box is unacceptable: an advise must be accounted for on the
basis of research published in the peer reviewed literature. The majority
of conventional protocols and concensus guidelines also often fail to refer
explicitely to the literature. Therefore, (diagnostic) advices suggested by
a computerised tool should come with the appropriate references from the
literature.

e Users attitude:

In a subset of (potential) users there may be a misunderstanding about
what computers can and cannot do for them. Generally, decision support
systems need intelligent and responsible users, who are able to interpret
the advise given and estimate its merit [11]. This, however is not ex-
clusively a matter of users attitude. Producers of decision support tools
should take this issue into account as well, especially when designing the
user interface and deciding which facilities are needed.

e Lack of integration of information:
Patient oriented decision support needs data from several sources. A de-
cision support system will generate new information (e.g. a diagnostic
advise) through inference, using patient-specific information. Integration
of information, multiple usability of patient data, integration of databases
and knowledge bases are common problems when using a heterogeneous
Hospital Information System (HIS). In practice, the completeness of pa-
tient information, and the accuracy and level of detail of diagnoses stored
in the HIS is often very poor [12].

e Lack of a controlled terminology:
This is a problem that even might not be solved completely in the near
future. Most standard classification systems are at a general level [8, 13],
thus lacking the required detail, or specialised [14] and therefore too lim-
ited to meet the needs for a broad decision support system. Furthermore,



there is not always a standard classification available, for instance for spe-
cific terminology used in text books.

e Careful introduction:

Introduction of a decision support system should be done as careful and
thorough as is done for drugs that are new on the market. Oddly enough
this tradition of careful introduction (and marketing !) is common in
the field of therapeutics, but not quite as established for support tools
in general and for diagnostics in particular. After introduction, the de-
cision support system will need constant monitoring of users needs and
maintenance to keep up with the latest results of medical research.

e The need of an integrated clinical workstation:
The appropriate infrastructure and workstations are not yet available in
all hospitals. Physicians will need on-line support during the implemen-
tation of the various functionalities of a reliable clinical workstation, that
integrates all the required information.

In conclusion, modern medicine is in need of computerised decision aids both
to meet its own high standards and to keep pace with the stage of development
in other domains such as manufacturing or the services industry. Although
decision support appears to be exceptionally suitable for the medical domain,
computer aided decision making in medicine is still in its infancy. The develop-
ment, implementation, assessment and further improvement of decision support
systems in medicine still need a lot of research.

2  Our approach

Diagnostic reasoning in the medical domain is a typical example of reasoning
with uncertainty. This uncertainty has different sources: missing patient infor-
mation, uncertainty in medical tests results or observations, and the uncertainty
about the physiological processes involved. A model on which a DSS is based
should be able to deal with these uncertainties. The different systems that
have been developed so far use a variety of modeling approaches which can be
roughly divided into two categories: The large systems, that attempt to cover
the whole of internal medicine use a rule-based approach with some rather
heuristic method to quantify uncertainty. These methods perform poorly in
practice [5, 6]. The main reasons are that the modeling of the relations be-
tween diseases and findings is at a very course level. Therefore, the diagnoses
suggested by these systems are too superficial for clinical use. Secondly, the
diagnostic process requires reasoning from causes to effects (diseases — finding)
and vise versa at the same time. The rule based approach, together with the
heuristics for uncertainty, is not well suited for such bidirectional reasoning.
For smaller systems, the probabilistic approach is typically used. The proba-
bilistic approach has the important advantage of mathematical consistency and
correctness. In particular Bayesian networks (see e.g. [15, 16, 17]) provide a



powerful and conceptual transparent formalism for probabilistic modeling. In
addition, they allow for easy integration of domain knowledge and learning from
data. Systems that are based on detailed modeling have been restricted to a
relatively small domain [9, 10]. The reason for this restriction is that Bayesian
networks will become intractable for exact computation if a large medical do-
main would be modeled in detail.

To proceed one has to rely on approrimate computations. Recently, varia-
tional methods for approximation are becoming increasingly popular [18, 19, 20].
An advantage of variational methods techniques is that they provide bounds on
the quantity of interest in contrast to stochastic sampling methods which may
yield unreliable results due to finite sampling times. Until now, variational ap-
proximations have been less widely applied than Monte Carlo methods, arguably
since their use is not so straightforward. We argue that variational methods are
indeed applicable to large, detailed Bayesian networks for medical diagnosis
constructed by human experts.

Although the formalism of Bayesian networks is very powerful, the con-
struction of networks for medical diagnosis is not straightforward. A learning
approach depends crucially on the availability of high quality patient data. In
particular, rare disorders should be well covered. In general, unfortunately, this
is rather exception than rule [12]. Therefore, to reach a successful diagnostic
DSS requires explicit modeling effort by human experts. The existing medical
literature is not sufficient to define the probabilistic model. Not all probabilis-
tic relations between variables have been documented. But it provides a useful
starting point for model design. Once a minimal performance is thus obtained,
the model can be improved by learning from patient data.

3 Probabilistic modeling in the medical domain

We here outline what the structure of a broad and detailed Bayesian network
will typically look like. This is based on an extrapolation of our current modeling
experiences. Details of the medical domain are beyond the scope of this paper
and are discussed elsewhere [21].

The variables to consider in the network are of different types. There are
diseases variables, which are typically of the binary type, signalling whether a
disease is present or not. The findings encode the results from laboratory mea-
surements, physical examination etc. As a simplification, these variables are
discretized, with medically relevant cut-off points. In practice, such discretisa-
tion does not lead to significant loss of information. In addition, there are prior
variables that describe the patient, such as sex and age.

In constructing the graph for the Bayesian network, human experts mostly
use “causal” relationships between variables as a guideline (the arrows in fig. 1).
Often, the expert can relate (large numbers of) variables via additional hidden
variables. These hidden variables may represent pathophysiological variables



that are known to have certain relations to the observable variables, but are
themselves not accessible during clinical investigation. Often, the use of hidden
variables results in a simplified and more transparent network.

The majority of probabilistic relations between the variables involve only
a small number of parents. Consequently, modeling using explicit probability
tables is feasible. These are estimated on the basis of data in the literature or
on “educated guesses” based on local statistics/experience if no data from the
literature are available.

Medical experts tend to divide knowledge concerning a medical domain into
sub-domains with a relatively small overlap. Therefore, the network will typ-
ically have a modular structure (cf. fig. 1). Each module represents a disease
with its relevant findings. In practice, the modules are rather small, containing
between 20-50 variables. Different modules are connected via shared variables
(e.g. pathophysiological variables that are relevant in different modules), com-
mon prior nodes, and/ or common findings nodes. The computational complex-
ity of the network N] consisting of the modules and their parents (black nodes
in fig. 1) can be assumed to be tractable.

The probabilistic relations for the findings require somewhat more care. For
example, ‘hemoglobin level’ (Hb) is a variable whose value is affected by many
diseases. Such nodes may have parents in many sub-domains. This makes the
use of a conditional probability table not feasible, as the size of the table grows
exponentially in the number of parents. Fortunately, this is neither necessary,
since medical experts are likely to agree with a ’sum of univariate relations’
between this finding and its parents. Such simplified conditional probability
tables require only the specification of order k parameters, where k is the number
of parents.

Even though the conditional probability tables are modeled in a compact
way, inference is still intractable.

4 Variational Approximations

In general, the problem of inference is to find the conditional probability dis-
tribution P(S;|E) of each of the nodes i given the evidence E. If P is in-
tractable, one has to approximate these conditional probabilities. In the vari-
ational method, the intractable probability distribution P(S|E) = Pg(S) is
approximated by a tractable distribution Q(S) (on the non-evidential nodes).
Then @ is used to compute the node probabilities @(S;). To construct @, one
first has to define a tractable graphical structure for @: Q(S) = H’y Q(Sy|m),
[22, 23, 20]. The next step is to optimize the parameters of () such that the
Kullback-Leibler (KL) divergence between @) and Pg,

Q(S)
Pr(S)

D(Q.Pp) =Y Q(S)log
{s}

(1)
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(a) Modular structure (b) Graphical structure

Figure 1: Modular and graphical network structure. Left: modular structure of
the network. A, B, C ... represent (overlapping) sub-domains. Each sub-domain is
modeled by a number of nodes (cf. right figure) representing variables that are relevant
in that domain. The upper nodes, e.g. ‘sex’ and ‘age’ represent common ancestors of
nodes in several sub-domains. The lower nodes, e.g. ‘Hb’ represent common children
of nodes in several sub-domains (e.g. related to anaemia). Right: underlying graphical
structure of same network. Filled circles: nodes in sub-domains and their common
ancestors. Open circles: common children

is minimized. The KL-divergence is related to the difference of the marginals of
Q and PE,

max [P(Si|E) — Q(S1)| < 1/ 3D(Q, P) )

(see [24]).

D(Q, Pg) depends on the numerical values of the conditional probability
tables Q(S;|m;). Setting the gradient of D with respect to these parameters
equal to zero, yields a coupled set of non-linear equations that can be solved
numerically.

The quality of the approximation depends strongly on the structure of Q.
The simplest approach is the so called mean-field approach, in which the graph
of @ is completely disconnected, i.e. Q(S) = []; @(Si). The other extreme is
to factorize @) according to a triangulated graph [15, 17] of P. In this case, one
obtains the exact solution () = Pg and D = 0. This solution is only theoretically
of interest, since its computational complexity is equal to the original inference
problem. However, it indicates that the variational approach using structure
interpolates between the standard mean field theory and the exact solution. In
general one must choose a structure for () that is a good compromise between
approximation error and complexity.

In figure 2 we plotted the maximal error maxg |Q(sq) —P(sq|sf)| as a function
of the network size for an artificially generated network. We also plotted the
required computer time for exact and approximate inference as a function of the
network size. We conclude that variational methods using structure significantly
improves the quality of approximation, within feasible computer time. In a



network with tractable substructures, as can be expected in medical diagnosis,
these substructures provide a useful starting point for the approximating model.
For more information on the variational approach see [25].
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Figure 2: Left: The maximal error as a function of the network size. Right: CPU-time
in Matlab seconds for exact and approximate inference as a function of the network
size

5 Promedas, a demonstration DSS

Promedas (PRObabilistic MEdical Diagnostic Advisory System)! is a DSS that
we are developing for the problem of anaemia. The aim is to use Promedas
to assess the usefulness of approximate methods for a DSS in practice. The
problem domain anaemia is chosen because we expect that the computational
problems described in the previous sections will be encountered in this domain.
For instance, anaemia can be subdivided in a large number of sub-domains, each
of which share a large number of findings. Furthermore, anaemia is a common
medical problem. This facilitates evaluation in practice. To cover the domain
completely, we expect that approximately 1000 nodes are needed.

To develop Promedas, we use our internally developed software environment,
called BayesBuilder. BayesBuilder has graphical tools for network construction,
evaluation, and maintenance. So far, Promedas covers megaloblastic anaemia.
It is currently based on a network of 91 variables, and is still tractable for exact
algorithms.

Promedas consists of a graphical user interface (GUI) to enter patient data
and for diagnostic consultation (fig. 3). It provides a differential diagnosis,
i.e. the probabilities of potentially relevant diagnoses and the probabilities of
potentially involved underlying mechanisms (e.g. pathophysiology) as percent-
ages (ranked in descending order). These probabilities are computed on the
basis of the available findings entered in the system. In addition, Promedas
computes which additional tests it expects to be most informative to decide

YA demonstration version of Promedas is available on CD-ROM. See
www.mbfys.kun.nl/snn/Research/promedas



|| Consultant
Categories (D) 1 i {11}

Diagno:

35% Cobalamin def, unknown cause

24% Pernicious anaemia

2% Cobalamin def, total gastractomy

2% Congenitally def. or abnormal intrinsic factar{F)

99% Megalohlastic Enthropoesis

99% Ineffactive enthropoesis

|® 99% Macrocytogis

99% Cobalamin deficiency (tissues)
B5% Defeclive sbsorption of cobalamin

D

2% Cobalamin def, Billroth | or Il gastrectomy

2% Atrophic gastritis 56% Reduced acid pepsin activity =
Instructions ~Test Pr {T)for :"C in tef., cause”
The diagnostic categories and mechanisms Infa (0100} | Test |

are shown in the top fists together with
the probabilities as predicted by Promedas.

““::&:3, vl

!Anti-mtrinsic factor antibodies

|Bnti-parietal cell anfibodies
|Billrath | or Il gastrectomy in the past
| Caustic ingestion in the past

|Total gastrectory in the past

i} iy a tiag or @
results in display of the tests with

their information content, represented by a
number between 0 (no effect on THIS
diagnosis) and 100 {THIS diagnosis will

he either Tully accepted or fully rejected).

6
=
1
i
i
5

| Gactrnecon:

Btk atest fiamythie middins Test Information for : “Pentagastine test” (in this context)

displays additional information in the (e} YES priot

mm!am hox, The test results are_showr_l ) pirpy | MEGATIVE 0212 n.7es 0.415
verlically and the states of the diaghosis BEOSITIVE 0.956 0.044 0.585
horizontally. Clicking on a test resuft ) PTIDY prior 0647 0,353 i

(row labels) enters that result.

@ P{D[T)

Figure 3: The Promedas diagnostic decision support system.

about a diagnosis, specified by the user. This information is computed given
the values of the variables previously entered and is defined as I(D,T) =
> prP(D,T)In(P(D,T)/P(D)P(T)) with P(D,T) the joint probability of di-
agnosis and test result, and P(D), P(T) the marginal probabilities of diagnoses
and tests, respectively. These probabilities are computed by marginalizing over
all the missing variables in the network. The information is normalised be-
tween 0 and 100, and displayed in descending order. In addition, Promedas
provides help information, medical background information and pointers to the
literature.

6 Utilisation

Taking into account the need for decision support system in general and di-
agnostic decision support in particular, we strongly believe that a diagnostic
decision support system is viable and, eventually, marketable. However, even
a pilot regarding the implementation and assessment a diagnostic decision sup-
port system that covers only a relatively narrow diagnostic field (i.e. anaemia)
will need careful, preferably step-wise, introduction to its target users, followed
by continuing support and mutual feed-back. It is expected that this will result
in growing acceptance and enthusiasm by its target users and finally leading to



wide-spread use.

The physicians that participate within this project work in daily hospital
practice as well. They have good contacts in the medical community in many
fields of medicine (general internal medicine, oncology, endocrinology, haema-
tology) within Utrecht University Hospital, afilliated (regional) hospitals and
various professional circles. In addition, the user group includes specialists in
internal medicine from other academic hospitals. Therefore, we feel that we
are able to “market” and to follow up a diagnostic decision support system at
least for research purposes (assessment) in The Netherlands. Wide spread ac-
ceptance of computer aided diagnostic decision support tools will probably need
some “trend setters”, who are most likely to be found in the academic circle.

7 Discussion

The development of a DSS for comprehensive medical diagnosis in internal
medicine represents a great challenge for AI. A broad and detailed probabilis-
tic network is intractable for exact inference in this context. It is currently
unknown, whether variational or other approximate methods are sufficiently
powerful to provide a practical solution. The “quality of approximation” is to
a large extent a user defined (medical) issue, since (1) comparison with exact
inference is not possible due to the size of the networks and (2) errors in the
approximation will be judged as acceptable not just on their numerical values
but more importantly on their medical implications. The only way to assess
the usefulness of approximate methods for modeling medical domains is by ac-
tually building such a system and evaluating it by users. The Promedas model
must be extended to 500-1000 variables in order to be able to address this issue
properly.

Further reading on graphical models can be found in [16, 26]. Further reading
on diagnostic decision support systems can be found in [4, 2].

The Promedas project is supported by the Technology Foundation STW.
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