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1 Introduction

The aims of this project are to develop novel theory, techniques and implemen-
tations for learning and reasoning in a complex dynamic multi-sensory envi-
ronment. The approach to reasoning and learning is based on the axioms of
probability theory and Bayesian statistics. It is argued that such an approach
is the most attractive way to design systems for reasoning and learning that are
capable of reliable and robust performance in complex real-world environments.

In section 2, we present some novel theoretical results for approximate in-
ference in large graphical models. In section 3, we apply these techniques to
medical diagnosis. In section 4 we show how to quantify the uncertainty in the
model parameters.

2 Neural Networks and Graphical Models

Neural networks are, in the statistical sense, graphical representations of non-
linear functions. Graphical Models, on the other hand, are graphical repre-
sentations of probability distributions. In the context of uncertain knowledge,
Graphical Models therefore, often provide a more natural representation of the
problem than neural networks. The core understanding in Graphical Models is
that the probability distribution over the variables of interest can be split into
subgroups on the basis of an assumed independence structure between vari-
ables. A link between two nodes in the graph represents the influence of one
variable on the likely state of the other. These models have proved valuable
in many sectors of Artificial Intelligence and Machine Learing. Indeed, many
traditional models, such as Hidden Markov Models, can be understood within
the Graphical Model paradigm. One of the original probabilistic neural network
models, the Boltzmann Machine (BM), is readily interpreted as an undirected
Graphical Model in this modern framework.

Computing with large Graphical Models uncovers many of the same diffi-
culties underlying the science of complexity - indeed, many of the computations
can be shown to be NP-complete. The Boltzmann Machine is an ideal proba-
bilistic model for understanding the difficulties of large computation and also
provides a testbed for algorithms. There are close links between the physics of
magnetic systems and Boltzmann Machines. Initially, one promising approach
for approximating Boltzmann Machines was adapted directly from the physi-
cal Mean Field approximation. In contrast with other approximate techniques,
such as Monte Carlo methods, Mean Field techniques provide exact bounds on
quantities of interest. The central idea is to approximate an intractable Graphi-



cal Model, represented by a discrete distribution P(.S), by a simpler distribution
Q(S). The parameters of this simpler distribution are found by minimizing the
Kullback-Leibler divergence

KL=7 {QlogQ - Qlog P} 1)
S

The original application of Mean Field techniques corresponds to assuming a
factorized distribution Q(S) = []¢;(S;) which did not provide entirely satis-
factory solutions, since the approximation was too limited (fig 1(b)). Very
recently, however, there has been a tremendous resurgence in the interest in
such “variational” techniques, using more powerful algorithms, whilst retaining
the attractive feature of exact bounds on quantities of interest. Graphically,
one approach is to uncover tractable subgraphs by removing nodes using mean
field methods, fig 1(a).

Part of the recent focus of work within the RWCP has been to extend the
variational approximations, increasing their accuracy and applicability to real
world problems. This has already succeeded in workable, practical algorithms
for both directed and undirected graphs. We have made the observation that, as
long as the Kullback-Leibler divergence is calculable, then any approximating
distribution can be used. We have exploited this to use a class of tractable,
“decimatable” Boltzmann Machines as the approximating distributions, fig 1(c).
This greatly improves the accuracy of approximation, without greatly increasing
the number of variational parameters, in contrast with, for example the mixture
approach[l, 2]. An application of our method to approximate the marginal
likelihood of the visible units of a toy, directed graph (fig 2), showed the method
to be more accurate than existing approximation methods (fig 3). We hope
to further extend this method to produce more accurate, bounded variational
approximations to many probabilistic models. Indeed, we have also developed
procedures that are directly applicable to calculations in statistical physics. We
hope to show that this approach will lead to a much clearer solution to some
calculational problems in the field of complexity.
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Figure 1: A fully connected 4 node BM is not decimatable. Variational approx-
imations correspond to decimatable subgraphs of varying complexity.



Figure 2: Directed graph toy problem (left). The hidden units (black) are
approximated by a BM (right), one of many possible tractable structures.
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Figure 3: Histogram of relative error In Pyyprop(V)/In Pegeet (V) — 1 for 500
random networks - note the different scales. Mean error: (a) 0.0156 (b) 0.0020

3 Medical Diagnosis with Large Probabilistic Net-
works

The project on Medical Diagnosis with Large Probabilistic Networks is in collab-
oration with the University Hospital Utrecht. The long term aim of this project
is to build a broad and detailed model for internal medicine. The model should
be rich and detailed enough to be useful for medical practice. The aim of the
model is to perform several types of medical reasoning, such as diagnosis and
active decision. In order to make reasoning computationally tractable, newly
developed variational methods are used.

In the first phase of the project, we restrict ourself to the medical domain
of anemia. With this restriction, modeling and inference is already a non-
trivial task, since about 100 diseases and several hundreds of other variables
are involved in anemia [3].

3.1 Motivation

Computer-based diagnostic systems can play many roles in decision support
and other areas of medical practice. Most systems are designed to produce
a differential diagnosis using a set of input findings entered by the user (as
opposed to textbooks that tend to do the reverse - taking individual diseases
and listing the associated findings). At present several ”Diagnostic decision-
support tools” are potentially useful such as Meditel, Quick Medical Reference,
DXplain, Iliad, and PEM-DXP.

The different systems that have been developed sofar use a variety of mod-
eling approaches which can be roughly divided into two categories: rule-based
approaches with or without uncertainty and probabilistic methods. The rule



based approach can be viewed as an attempt to simplify the probabilistic ap-
proach in order to reduce computational complexity. The probabilistic approach
has the advantage of mathematical consistency and correctness. In particular
belief networks [4])) provide a powerful and conceptual transparent formalism
for probabilistic modeling. The progress that has been made during the last
decade in exact computation in belief networks makes the argument in favor of
rule based approaches less and less persuasive Indeed, most modern approaches
for medical diagnosis are based on the probabilistic approach.

The lack of performance of the current systems is therefore not due to
the method that is used, but rather due to the level of detail at which the
disease areas are modeled. Either the system is based on detailed modeling,
but restricted to a small subdomain. Or the system covers a large domain, but
at cost of the level of detail at which the disease areas are modeled. The reason
for this is that a belief network becomes intractable for exact computation if a
large medical area would be modeled in detail. In other words, systems based
on exact computation are not able to meet the requirements for general medical
practice and one has to resort to approximate methods. In this project we aim
to demonstrate the feasibility and the usefulness of this approach.

3.2 Modeling

The problem of building a system for internal medicine can be subdivided into
two subproblems: a modeling problem and an inference problem.

The modeling problem is to build a model which includes -up to a satis-
factory level- all the necessary knowledge needed for medical reasoning. Our
experience has shown, that in general the data available from hospital databases
is insufficient to train a detailed model up to a satisfactory level of accuracy.
This is also the case for aneamia !. Therefore, our approach is to build a belief
network on the basis of expert knowledge of physicians.

Building a belief network is only feasible if the number of parents states is
limited, or if parametrized nodes are used, such as noisy-OR nodes[4]. However,
this restriction is not likely to limit the amount of expert knowledge that can
be put in the network, since the expert knowledge of the physicians seem to
have exactly the same restrictions.

In addition, medical experts tend to subdivide the medical domain into
subdomains, which have only a small overlap. As a result, the final network
has a modular structure (cf. fig. 4). Each module represents a subdomain by
a reasonably small belief network. The nodes in the subdomains have only
a small number of parents. The interconnectivity between the subdomains is
also small. There are two types of variables outside the subdomains. One
type are variables like 'age’ or ’sex’, which determine a priori probabilities of
diseases. These variabeles are modeled as common ancestors of a large number
of subdomains. The other type are variables such as ‘headache’. Intuitively,
‘headache’ is a variable that typically can have its cause in a large number of
subdomains. Such variables are modeled as common children of a large number

Tn some special cases we have found that data of sufficient quality and quantity exist to
train useful models on data only
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Figure 4: Graphical structure of the modular network. A, B, C ... represent (overlap-
ping) subdomains. Each subdomain is modeled by a number of nodes (not shown in the
figure) representing variables that are relevant in that domain. The upper nodes, e.g.
‘sex’ and ‘age’ represent common ancestors of nodes in several subdomains. The lower
nodes, e.g. ‘headache’ represent common children of nodes in several subdomains.

of subdomains. Since these nodes have parents in many subdomains, they
should be modeled in a parametrized way, such as noisy-OR.

3.3 Approximate Inference

The inference problem is to compute probabilities in the model, given evidence.
In the modular network described in the previous section, exact inference on
the common children is intractable, since that involves a summation over a
large number of parent states. On the other hand, on the upper part of the
network - that is the network apart from the common children - exact inference
is tractable, thanks its modular structure and sparse connectivity.

In a previous part in this paper, we described how intractable networks
can be variationally approximated using tractable graphical structures. These
methods can be applied straightforwardly to do approximate inference on the
common children. The key step is to use the graphical structure of the upper
part of the network to compute bounds of probabilities of the common children.
Both upper bounds and lower bounds can be computed in this way, and thus
conditional probabilities can be bounded as well.

To conclude, we would like to stress that the variational approximations that
we use exploit both the graphical structure of the upper part of the network
and the noisy-OR parametrization of the common children, thus enabling very
tight bounds.



4 Statistical embedding of learning methods

Neural networks are considered state-of-the-art prediction and classification
methods. In almost any benchmark study, they can at least compete with
alternative approaches. Despite this apparent success, people sometimes hesi-
tate to use them because of their presumed obscurity: they perform well, but
you should not ask why. In regression problems, their inherent nonlinearity
makes them more difficult to interpret than simpler alternatives such as linear
regression. Similarly, for classification tasks inductive methods as for example
decision tree algorithms are much more appealing to our human understand-
ing than neural networks. In the RWCP project, we therefore aim at a better
grip on the interpretability and reliability of neural networks. Our methods
are based upon a statistical approach: instead of considering a single neural
network, we will extract knowledge from ensembles of neural networks.

4.1 Computing error bars

Neural networks are often applied to regression tasks. Error bars then provide
a first notion of reliability. In a regression task the goal is to estimate an
underlying mathematical function between input and output variables, based
on a finite number of data points, possibly corrupted by noise. More specifically,
in our database, we have a set of P pairs {Z*, t#}, with Z representing the inputs
and t* the target, which are all assumed to be generated according to

t(T) = f(Z) +£(2),

where f(Z) is the unknown relationship we are looking for, and where £(%) de-
notes noise with zero mean. The usual assumption is that this noise is normally
distributed with variance independent of Z. The output of a neural network
o(Z) can be interpreted as an estimate of the regression f(Z), i.e., of the mean
of the target distribution given input variable £. Sometimes this is all we need
to know: a reliable estimate of the regression f(Z). In real-world domains,
however, it is important to quantify the accuracy of our statements. Saying
that our estimate of the target ¢# is 10 + 3 can lead to a decision completely
different from the one based on 10.16 £ 0.01.

We have developed a method to compute these error bars [5] based on
ensembles of neural networks. Different networks are generated by training
them on slightly different parts of the available data and by initializing them
with different weights. This yields not a single estimate of the regression o(Z),
but a whole collection (ensemble) of estimates o;(Z) where i refers to a particular
network.

In [6] we showed that to arrive at the optimal estimate of the regression one
should take a weighted average of the individual estimates:

N
o(f) = Y ioi(7) . (2)
i=1



where the weighting factors a; can be computed through a procedure called
“balancing”. The variance within the ensemble of networks,

o (&) = E o ;az[oi —6(2)]?, (3)

immediately provides an estimate of the variance to be used in computing the
confidence intervals.

Confidence intervals quantify our confidence in o(Z) as an estimate of the
true regression f(Z). Usually, we are more interested in prediction intervals.
Prediction intervals consider the accuracy with which we can predict the targets
t(Z), i.e., deal with the quantity ¢(Z) — o(Z) instead of f(Z) — o(Z). From,

t(Z) — o(7) = [f (&) — o(Z)] + £(7) , (4)

it is easy to see that a prediction interval necessarily encloses the corresponding
confidence interval.

Computing prediction intervals is quite complicated. We have to build a
new model to estimate the variance x?(#) of the noise £(&) inherent to the
problem as a function of the inputs #. For example, x?(Z) may be modelled by
a separate neural network. From (4) we then deduce that the variance to be
used in the prediction interval should be based on the sum of x?(¥), the variance
of the noise inherent to the data, and o2(%), the variance corresponding to the
confidence interval.

Incorporation of the model uncertainty (the width of the confidence interval)
is especially important in regions of input space where there has been hardly
any training points. In these regions, the different networks in the ensemble
will tend to give quite different results, leading to a relatively large variance
o%(Z) and thus a relatively wide prediction interval (see [5] for an illustration
of this effect).

Figure 5 gives an example of confidence intervals and prediction intervals
obtained in a real-world problem regarding the prediction of sales figures for
department stores.

4.2 Input relevance determination

The inputs of a neural network correspond to explanatory variables, i.e., vari-
ables that may have an effect on the output. Afterwards we then can try to
quantify the relevance of these explanatory variables: did we really need them
or could we as well do without them? Leaving out irrelevant input variables
can both lead to better generalization and prediction performance and save
resources (no need to collect irrelevant variables). Furthermore, knowing the
relevance of input variables increases the user’s insight into the problem.

We have applied the above methods to the problem of input relevance de-
termination [7, 8]. Figure 6 illustrates the relevance of the input variables for
a problem regarding the sales prediction of deparment stores. We started with
an ensemble of networks trained on all input variables. Iteratively we removed
the variable that gave the smallest contribution to the percentage of explained



sales

Figure 5: Standard confidence (dashed lines) and prediction (solid lines) inter-
vals for the expected sales figures of a department store in 10 consecutive weeks.
Plusses indicate observed sales figures.

variance, averaged over all outputs. In this way we obtained Figure 6, which
from right to left, gives the order in which the groups of input variables were
eliminated. The remaining group of input variables (not shown) corresponds to
the day of the week, which explains about 80% of the variance in the data. The
hatched areas show the contributions of each group of input variables, which
together with the filled areas yield the cumulative sums.
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Figure 6: Additional percentages of variances explained by different groups of
variables as obtained using partial retraining. The day of the week explains
about 80% of the variance in the data (not shown). This is an illustration on
real-world data regarding the sales prediction of department stores.
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