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Abstract

In this paper, we derive a second order mean field theory for directed
graphical probability models. By using an information theoretic argu-
ment it is shown how this can be done in the absense of a partition func-
tion. This method is the direct generalisation of the well-known TAP
approximation for Boltzmann Machines. In a numerical example, it is
shown that the method greatly improves the first order mean field ap-
proximation. The computational complexity of the first (second) order
method is linear (quadratic) in the network size and is exponential in the
potential size. For a restricted class of graphical models, so-called single
overlap graphs, the second order method has comparable complexity to
the first order method.

1 Introduction

Recently, a number of authors have proposed methods for approximate inference in large
graphical models. The simplest approach gives a lower bound on the probability of a
subset of variables using Jenssen’s inequality (Saul et al., 1996). The method involves the
minimization of the KL divergence between the target probability distribution p and some
’simple’ variational distribution g. The method can be applied to a large class of probability
models, such as sigmoid belief networks, DAGs and Boltzmann Machines (BM).

For Boltzmann-Gibbs distributions, it is possible to derive the lower bound as the first
term in a Taylor series expansion of the free energy around a factorized model. The free
energy is given by — log Z, where Z is the normalization constant of the Boltzmann-Gibbs

distribution: p(z) = M . This Taylor series can be continued and the second order
term is known as the TAP correction (Plefka, 1982; Kappen and Rodriguez, 1998). The
second order term significantly improves the quality of the approximation, but is no longer
a bound.

For probability distributions that are not Boltzmann-Gibbs distributions, it is not obvious
how to obtain the second order approximation. However, there is an alternative way to
compute the higher order corrections, based on an information theoretic argument. Re-
cently, this argument was applied to stochastic neural networks with asymmetric connec-
tivity (Kappen and Spanjers, 1999). Here, we apply this idea to directed graphical models.



2 Themethod

Letz = (z1,...,2z,) be an n-dimensional vector, with z; taking on discrete values. Let
p(x) be a directed graphical model on z. We will assume that p(z) can be written as a
product of potentials in the following way:

z) = H pr(Zr|mr) = exp Z br(zF). 1)
k=1 k=1

Here, pr(zk|71) denotes the conditional probability table of variable z; given the values
of its parents 7. ¥ = (x, ) denotes the subset of variables that appear in potential &
and ¢ (x*) = log pi(xx|mx). Potentials can be overlapping, z* N 2! # 0, and z = Uy z*.

We wish to compute the marginal probability that z; has some specific value h; in the
presence of some evidence. We therefore denote z = (e, h) where e denote the subset of
variables that constitute the evidence, and h denotes the remainder of the variables. The
marginal is given as

) o p(h/l; 6)
P =Tty

Both numerator and denominator contain sums over hidden states. These sums scale ex-
ponentially with the size of the problem, and therefore the computation of marginals is
intractable.
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We propose to approximate this problem by using a mean field approach. Consider a fac-
torized distribution on the hidden variables h:

h) = H ai(hi) ®3)

We wish to find the factorized distribution ¢ that best approximates p(h|e). Consider as a
distance measure

p(hle))
KL = p(hle) log ( . 4)
; (hle)log { o5
It is easy to see that the ¢ that minimizes KL satisfies:
q(hi) = p(hile) ®)

We now think of the manifold of all probability distributions of the form Eq. 1, spanned
by the coordinates ¢y (z*),k = 1,...,m. For each k, ¢y (z*) is a table of numbers,
indexed by z*. This manifold contains a submanifold of factorized probability distri-
butions in which the potentials factorize: ¢ (z*) = > iiek Pri(zs). When in addition,

Yok.ick Ori(x:) = logqi(x:),i € h, p(hle) reduces to g(h).

Assume now that p(h|e) is somehow close to the factorized submanifold. The difference
Ap(h;le) = p(h;le) — gi(h;) is then small and we can expand this small difference in
terms of changes in the parameters A¢y (%) = ¢ (z¥) —logg(z*),k=1,...,m

Alogp(hile) = ZZ(%) Ady(z*)

02 logp(hile) - -
- %kzy, <6¢k k)0 (it )> ()0

+ higher order terms (6)



The differentials are evaluated in the factorized distribution q. The strategy is now the
following. We are interested in the marginals p(h;). Trivially, this can be reformulated as
being interested in the factorized distribution such that ¢(h;) = p(h;). Now, the approach
is to set the expansion

Alogp(hile) =0 7

and solve for g(h;). This factorized distribution gives the desired marginals up to the order
of the expansion of A log p(h;|e).

It is straightforward to compute the derivatives:
dlog p(hile)

Oy, (z*)

9> log p(hile)
O (z*)0¢i(y')

= p(@*|hi,e) - p(a"le)

p(z*, 7 |hi, e) — p(z*, 7' |e)
—p(z* |hi, e)p(@ |hi, ) + p(z*|e)p(§'|e) (8)

Using notation where (...), and (...) are the expectation values with respect to the fac-
torized distributions g(x|h;, e) and g(xzle), and ({...)); = (...); — (...) is the difference
between expectation values, we obtain

Alogp(hile) = D ((A¢w))i ©)

k

+% Z (((AgrAdr))i — (Agr); (Adi); + (Agr) (Ady)), (10)
k.l

+higher order terms (11)

To first order, setting Eq. 11 equal to zero, we obtain

0= {(Ads))i = (logp()); —loga(hs) + const., (12)
k

where we have absorbed all terms independent of ¢ into a constant. Thus, we find the
solution .
q(h;) = - exp ({log p(z));) (13)
K3
in which the constants Z; follow from normalisation. The first order term is equivalent to
the standard mean field equations, obtained from the Jensen inequality.

The correction with second order terms is obtained in the same way, again dropping terms
independent of i:

N | =

2

q(hi) = %eXp ((Ing(ﬂf))i +
k,l

> (AdkAd); — (Ady), (A¢1),~)> (14)

were, again, the constants Z; follow from normalisation. These equations, which form the
main result of this paper, are generalization of the mean field equations with TAP correc-
tions for directed graphical models.

In fact, one could also drop the last term in Eq. 14 because of the identity:

Z (Agr); (Adr); = <Z<(A¢k>>z’ + (A¢k)> = const.

ki k



However, numerical experiments show that this has a strong negative effect on the conver-
gence of the fixed point iteration.

The complexity of the mean field equations (13) is exponential in the number of variables
in the potentials ¢, of P: if the maximal clique size is ¢, then for each i we need of the
order of n; exp(c) computations, where n; is the number of cliques that contain node i.

The second term scales worse, since one must compute averages over the union of two
overlapping cliques and because of the double sum. However, things are not so bad. First
of all, notice that the sum over k and [ can be restricted to overlapping cliques (k N1 # 0)
and that 4 must be in either & or [ or both (i € k U I). Denote by n* the number of cliques
that have at least one variable in common with clique k£ and denote by noverlap = maxy 1
Then, the sum over k£ and [ contains not more than 7;neverlap t€rMS.

Each term is an average over the union of two cliques, which can be worse case of size 2¢—1
(when only one variable is shared). However, since (A¢rAgr); = ((Adk)pny A1), W

can precompute (A¢y),~, for all pairs of overlapping cliques &,1. Thus, the worse case
complexity of the second order term is less than n;neveriap €xp(c). Thus, we see that the
second order method has the same exponential complexity as the first order method, but
with a different polynomial prefactor. Therefore, the first or second order method can be
applied to directed graphical models as long as the number of parents is reasonably small.

For implementational purposes, we can therefore write Eq. 14 also as

ah) = e | Y (ogpeh), +5 O ((@60?) - a0)?)

k,ick k,i€k

+ 3 N ((AdkAG),; — (Adr); (Ad),)

k, i€k I>k,i€l

+ 3 Y (AGAR), — (A, (Adr);) (15)

k i€k Ik, igl

3 Complexity and single-overlap graphs

The fact that the second order term has a worse complexity than the first order term is in
contrast to Boltzmann machines, in which the TAP approximation has the same complexity
as the standard mean field approximation. This phenomenon also occurs for a special class
of DAGs, which we call single-overlap graphs. These are graphs in which the potentials ¢
share at most one node. Figure 1 shows an example of a single-overlap graph. For a single
overlap graph, one can rewrite Eq. 14 as

ah) = exp | flogp(a), +5 3 (((A6)2), - (Agn)?)

Z; '
l,i€l

= D0 ((AG) Ad), + D ((Ad))i (Adu), (16)

Liel j'#i 1,i€l

which has a complexity that is of order n;(c — 1) exp(c). For instance, for Boltzmann
Machines n; = noverlap =7 — 1 and ¢ = 2.
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Figure 1: An example of a single-overlap graph. Left: The chest clinic model
(ASIA)(Lauritzen and Spiegelhalter, 1988). Right: nodes within one potential a re grouped
together, showing that potentials share at most one node.
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Node Exact MF | TAP
visit to Asia? 0.010 | 0.010 | 0.010
Smoking? 0.500 | 0.420 | 0.524

Tuberclosis? 0.010 | 0.000 | 0.000
Lung cancer? 0.055 | 0.000 | 0.000
Bronchitis? 0.450 | 0.264 | 0.410
Either tor I? 0.065 | 0.000 | 0.000
positive X ray? || 0.110 | 0.050 | 0.050
Dyspnoea? 0.436 | 0.223 | 0.497

Table 1: Marginal probabilities of states being ¢rue obtained in the chest clinic model
(ASIA). First column: exact marginals. Second column: marginals computed using first
order approximation (mean field). Third column: marginals computed using an approxi-
mation up to second order (TAP).

4 Numerical results

We illustrate the theory by a toy problem, which is inference in Lauritzen’s chest clinic
model (ASIA), defined on 8 binary variables {A,T,S,L,B,E, X, D} (see figure 1, and
(Lauritzen and Spiegelhalter, 1988) for more details about the model). We computed exact
marginals and approximate marginals using the approximating methods up to first and sec-
ond order respectively. The approximate marginals are determined by sequential iteration
of (13) and (14), starting at g(z;) = 0.5 for all variables i. Results are shown in table 1.

5 Discussion

In this paper, we computed a second order mean field approximation for directed graphical
models. We show that the second order approximation gives a significant improvement
over the first order result. This suggests that this method can be of significant practical
value.

The derivation in this paper does not use directly that the graph must be directed. Therefore,
we expect that this result is equally true for Markov graphs.

Whereas the complexity of the first order approximation is of O(exp K), with K the max-
imum number of variables in a potential of p, we find that in general the second order
approximation requires O(exp 2K) computations. We define a new class of graphs, single
overlap graphs, for which this increase in complexity does not occur. Examples of such
graphs are Boltzmann distributions with second order interactions as well as the ASIA



network, used as a numerical example in this paper. In any case, for large K, additional
approximations are required, as was proposed by (Saul et al., 1996) for the first order mean
field equations. It is evident, that such additional approximations are then also required for
the second order mean field equations.

It has been reported (Barber and Wiegerinck, 1999; Wiegerinck and Kappen, 1999) that
similar numerical improvements can be obtained by using a very different approach, which
is to use an approximating distribution g that is not factorized, but still tractable. A promis-
ing way to proceed is therefore to combine both approaches and to do a second order
expansion aroud a manifold of distributions with non-factorized yet tractable distributions.
In this approach the sufficient statistics of the tractable structure is expanded, rather than
the marginal probabilities.
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