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Abstract. Itis well established that cortical neurons display synchronous
firing for some stimuli and not for others. The resulting synchronous
subpopulation of neurons is thought to form the basis of object percep-
tion. In this paper this ’dynamic linking’ phenomenon is demonstrated in
networks of binary neurons with stochastic dynamics. Feed-forward con-
nections implement feature detectors and lateral connections implement
memory traces or cell assemblies.

1 Introduction

It is well established that cortical neurons display synchronous firing for some
stimuli and not for others [1, 2]. In particular, it has been shown experimentally,
that correlations depend on the amount of conflict in the stimulus presented [3].

The resulting synchronous subpopulations of neurons (cell assemblies) are
thought to form the basis of segmentation and object perception [4, 5]. The
role of individual cells is to represent important ’atomic’ visual features, such as
edges, corners, velocities, colors, etc. Objects can be defined as a collection of
these features: The cell assembly is a neural representation of the entire object.
Thus if the local features are part of a coherent global stimulus, the corresponding
neurons synchronize. If the same local features are not part of a global stimulus,
no such synchronization occurs.

The observed synchronous firing in animal experiments has in fact two com-
ponents: one is the presence or absense of an oscillatory component in the auto-
and cross-correllograms. The second phenomenon is the presence or absence of
a central peak in the cross-correllograms. We will refer to these phenomena as
oscillations and correlations, respectively. Models for feature linking have been
proposed for feature linking by various authors, either based on oscillating neu-
rons [6, 7] or integrate-and-fire or bursting neurons [8, 9, 10].

In this paper we want to study stimulus dependent assembly formation in
networks of stochastic binary neurons. Feed-forward connections implement fea-
ture detectors and symmetric lateral connections implement memory traces. We
define correlation as the presence of a central peak in the cross-correllograms.
Neurons that are synaptically connected will display correlated fire under almost



all stimulus conditions. Therefore, we use a network with short-range connec-
tions and make use of the effect of long range correlations that are present in
spin systems near the critical temperture.

These networks provide an attractive model to study feature linking for
two reasons. The stochastic dynamics of these networks lead asymptotically to
the Boltzmann-Gibbs distributions, which gives insight in the conditions under
which long-range correlations occur. In this way the correlated firing can be
related to well know equilibrium properties of spin systems. Secondly, these net-
works offer an immediate solution to learning based in correlated activity using
the Boltzmann Machine learning paradigm [11].

2 The model

The basic architecture that we consider is given in Fig. 1. A sheet of sensory
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Fig. 1. Boltzmann Machine architecture with feed-forward and lateral connections.
Input is provided by z1,. .., z,, with x; real-valued or binary valued. Hidden units are
S1,--.,8h, With s; = £1.

neurons in the visual cortex is modeled as a two-dimensional grid. At each grid
location, a column of neurons with identical receptive fields is present. Neurons
in one column respond optimally to different features in the receptive field.

The equilibrium distribution of the sensory neurons s given a stimulus x is
given by

1

p(s|lz) = 7@ exp{w Z Si,aSja+V Z SiaSiar + Z hia(z)sin} (1)
(4,7),c i,a,0! i,
S =F1,9=1,...,n,a=1,...,m denote the firing of the neuron with feature

preference a at grid location i. s; o is a stochastic variable subject to Glauber



dynamics, z denotes the external stimulus. It consists of a two-dimensional ar-
ray of feature values z; = 1,...,m,2 = 1,...,n. w and v denote the strength
of the lateral nearest neighbor interaction and the intra-column interaction, re-
spectively.

hio(z) is the external field (stimulus) component for neuron s; o in the pres-
ence of stimulus z. We assume that h; o(z) only depends on the local stimulus
value z;, i.e. h; o () = ho(z;). By definition, neuron s; o has a prefered stimulus
value a but it is usually also activated with nearby feature values. Here we will
assume ho(z;) = hda,z, + ho. h is the overal strength of the stimulus and hy is
a neuron threshold, which are free parameters of our model.

In the case that the intra-column interaction v = 0, Eq. 1 becomes a product
of independent models, one for each feature value a:

p(5|$) = Hapa(sa|x)

1
DPa(s|z) = 7@ exp{w (z:) 8i85 + Z(h6a7Zi + hg)si}
’L,] K3

Thus we can study the behaviour for one value of a.

3 Correlation lengths

Consider a visual stimulus z. The external input to neuron ¢ in layer « is either h
or 0 depending on whether z; = a. The task of the network is to represent these
inputs in the various feature layers, such that 1) neurons locally represent the
presence or absence of a feature value and 2) the activity between the neurons
that encode one stimulus are correlated in regions where the stimulus is coherent.

A convenient quantity that expresses correlation between neurons j and k is
the correlation function:

Tk (t) = (s(0)sk(2)) — (s5(0)) (s;(0)) (2)

The correlation function depends on the temperature S and on the connectivity
of the network. For instance, in a d-dimensional Ising spin system, the con-
nections are only between nearest neurons in a d-dimensional grid. I. can be
calculated in the Landau approximation and takes the form

I o r? exp(—r/§)

with r the distance in the grid. £ depends on the temperature of the system.
Around the critical temperature T, £ o |T' — T.|" 2.

In the absence of a stimulus to layer «, we want to have low firing rates of the
neurons. Therefore, we require hg < 0. In the presence of a coherent stimulus, we
would like long range correlations. Correlations are maximal when hg+h = 0, i.e.
when the total external field is absent. This is because for hg + h # 0, the second
term in Eq. 2 strongly increases, making the correlation function effectively zero.

In Fig. 2 we show the auto-correlations (s;(0)s;()) as a function of time ¢ for
9 neurons in a 3 X 3 sub-grid of a 10 x 10 grid of neurons for various coupling



strengths w and coherent stimulus. Note that (s;s;} approaches the squared
mean firing rate (s;)” for large times. (s;) = 0 for small coupling w. There exists
a critical coupling above which there is a coexistence of two phases, each with
non-zero (s;). The critical coupling is approximately w = 0.4.
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Fig. 2. Auto-correlations as a function of time for different coupling strength for co-
herent stimulation. The network consists of a 10 x 10 grid of neurons with periodic
boundary conditions. External field is zero.

In Fig. 3 we show the equal time cross correlation function I7.(0) for various
coupling strengths w and coherent stimulus as a function of distance in the
network.

In [12], we applied this mechanism to a stimulus that consists of 2 objects.
It was shown, that all cells belonging to the same object are highly correlated,
whereas cells belonging to different objects are not correlated.

4 Discussion

We have shown how long range correlations in spin models can be used to signal
coherence in stimuli. In particular, we have proposed a two dimensional Ising
model for feature linking in a visual task. This model allows to study the response
of a network to stimuli with varying degree of coherence.

Whereas the mean firing rate indicates the local evidence for a stimulus
feature, the correlations signal whether these local features are part of a coherent
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Fig. 3. Equal time cross-correlation function as a function of distance in the grid for
different coupling streng th. The network consists of a 10 x 10 grid of neurons with
periodic boundary conditions. External field is zero. The network was iterated 10000
times to remove transient effects. Correlation function was calculated over 3000 7 times.
Results are averaged over all neuron pairs with equal distance.

stimulus or not. In this sense, stochastic networks can be used to solve the
dynamic linking problem as stated in the introduction.

This model contains a sensory layer and a hidden layer. The hidden layer
represents an interpretation of the sensory input. Sensory input provides local
evidence. The lateral connections in the hidden layer provide global correlations
between features that belong to the same stimulus and no correlations between
features from different stimuli.

In this paper, we have only studied correlations at 0 time delay. In [13],
delayed correlations were studied in networks composed of fully connected sub-
populations, but the issue of dynamic linking was not addressed there. Never-
theless, one expects similar time-delayed correlation as were reported there.

Clearly, we are not proposing the Ising model as a serious computational
model for the cortex and it should be investigated whether and how this mech-
anism can be extended to other network architectures. In the present model,
neighboring cells with identical receptive fields are connected. In a more realistic
network, the lateral connectivity would arise from learning and more complex
connectivity patterns arrise. When learning results in a combination of excita-
tory and inhibitory connections, the resulting network will contain frustration,



and may behave more like a spin glass than like ferromagnetic model. It is known,
that long range correlations also exist in such frustrated systems.

A straightforward way to learn the lateral connections strengths from an

environment is given by the Boltzmann Machine learning framework [11]. Tt is
interesting to note that this rule is based on correlated activity (s;s;) instead of
mean field activity (s;) (s;).
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