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Abstract

It has been observed that cortical neurons display synchronous firing
for some stimuli and not for others. The resulting synchronous cell as-
semblies are thought to form the basis of object perception. In this paper
this ’dynamic linking’ phenomenon is demonstrated in networks of binary
neurons with stochastic dynamics. Analytical treatment within the mean
field theory and linear response theory is possible and is compared with
simulations. We establish that correlations are a sensitive function of the
spatial coherence in the stimulus. We discuss the possibility to use these
correlations as a mechanism for scene segmentation.

PACS numbers: 02.70.-c, 05.50.4q, 87.10.+e, 87,22.As

1 Introduction

It is well established, that the behavior of sensory neurons in the visual cortex
can be described by a receptive field: A neuron is sensitive to certain specific
stimuli and not to others [1]. Tt is often assumed that the role of individual cells
is to represent local visual features, such as edges, corners, velocities, colors, etc.
These representations may co-exist on several length scales. The representation
of local receptive fields or features is encoded in the feed-forward synaptic con-
nections of individual neurons. This representation is thought to be an efficient
information-theoretic description of the local structure of images [2].

Objects are generally believed to be represented by a collection of local
features. The neurons that represent the local features of the object become
active and constitute a so-called cell assembly [3]. The cell assembly is a neural
representation of the object.



Since a visual image generally contains many objects simultaneously, many
cell assemblies can be active at the same time. Therefore, some labeling mech-
anism must exist to distinguish whether active neurons belong to the same cell
assembly or to different cell assemblies. There exist various proposals to facil-
itate such a mechanism. One proposal is based on the synchronization of the
firing patterns between neurons [4, 5, 6]. Tt is assumed that the resulting syn-
chronous subpopulations of neurons form the basis of segmentation and object
perception [7, 8].

There is some experimental evidence, that neurons in the visual cortex dis-
play synchronous firing for some stimuli and not for others [9, 10, 11, 12]. In
particular, some studies show that synchrony depend on the amount of conflict
in the stimulus presented [13, 14]. Thus if features are part of the same object,
the corresponding neurons synchronize. If the same features are not part of the
same object, no such synchronization occurs. The observed synchrony has in
fact two components: one is the presence or absence of a central peak in the
cross-correllograms [11, 14]. An additional aspect is the presence or absence
of an oscillatory component in the auto- and cross-correllograms [9, 10]. Both
phenomena could play a functional role as a mechanism for feature linking.

So far, most models have been based on oscillations and have addressed
two key questions. One question is how to implement dynamic feature linking,
i.e. how synchrony between neurons can arise for some stimuli and not for
others. Tn [15] a network of bursting neurons is considered. Tn this model,
stimulus dependent assembly formation is based on fast synaptic modulations.
[16, 17, 18] introduce a network of pairs of non-linear oscillators which models
an orientation column. The network involves specific delayed synchronizing
and desynchronizing connections that can be learned. [19] discuss a network of
integrate-and-fire neurons organized in orientation columns. Both these models
display stimulus dependent assembly formation in the sense that oscillations
synchronize for spatially coherent stimuli and can be made to desynchronize for
incoherent stimuli, without changing the synaptic strengths. Similar findings
are reported in [20]. In [21] an overview is given of various network models that
can give rise to oscillatory behavior.

In [22] a non-oscillatory model is introduced and correlations between rate
coded neurons are studied. It is shown, that correlations are strongest for neu-
rons firing neither too fast nor too slow. As a result, correlation based couplings
depend on the mean firing activities of the two neurons involved, and thus pro-
vides in principle a mechanism for feature binding. This property will also
emerge in the present paper, but in the context of binary neurons instead of
rate coding. The issue how the stimulus affects the correlations is not explored
in [22].

The second question is how synchrony can play a functional role for scene
segmentation when various objects are present. An attractive model for repre-
senting various objects in a visual scene in a translationally invariant manner
was proposed by [23]. The translational invariance is achieved by learning strong



lateral connections encoding rigid relations between object features all over the
retinal image. As a result, several orbit assemblies are activated for each object,
which are detected by individual neurons in a separated layer. An additional
set of lateral couplings between these neurons is defined. The result is, more or
less, that excitatory connections develop between neurons that both participate
in the same object and inhibitory connections between neurons that partici-
pate exclusively in different objects. By assuming an oscillatory neuron model,
segmentation of the image in a number of object is achieved in the temporal
domain. This model was given a solid computational basis and was analysed
theoretically in [24, 25].

In this paper we propose correlations that arise in networks of stochastic
binary neurons as a mechanism to account for both feature linking and seg-
mentation. Stochastic networks provide an attractive model for several reasons.
Assuming detailed balance, the stochastic dynamics of these networks leads
asymptotically to the Boltzmann-Gibbs distribution. Therefore, the effect of
stimulus dependent correlations can be analyzed in equilibrium in the mean
field framework and the linear response theory. Such analysis is more compli-
cated or not possible for oscillatory models. This approach was first done in [26],
where (time-delayed) correlations were studied in networks composed of several
sub-populations of stochastic binary neurons. The issue how the correlations
depend on the stimulus was not addressed there.

Another advantage of the equilibrium formulation is that it offers an im-
mediate solution to learning based on correlated activity using the Boltzmann
Machine learning paradigm [27] which has a clear information theoretic basis.
Learning in more complex networks involving various types of inhibition, caus-
ing competition in subnetworks can be achieved using the approach outlined in
[28].

A third advantage of the proposed approach is that higher order statistics
may also play an important functional role in artificial networks. The experi-
mentally observed stimulus dependent (2 point) correlations are only the sim-
plest example. The proposed Boltzmann Machine neural network is the simplest
artificial system to study these phenomena.

Last, but not least, models based on oscillations tend to oscillate all the time.
Setting up the dynamics such that oscillations arise under some conditions and
not under others is in general difficult. Therefore, it is difficult to obtain feature
linking in these models. This problem was partly overcome in [18]. On the other
hand, to obtain stimulus dependent correlations in stochastic models is quite
straightforward, as we will see.

The proposed mean field treatment is different to what is usually done in
attractor neural networks [29, 30]. Those analyses are typically applied to net-
works for which in the large N limit the mean field predictions become exact
(for example fully connected networks). Therefore, no non-trivial correlations
exist in these networks: < s1s9...s5 >= myms...myg, with m; the mean field
activity. To obtain non-trivial correlations, one must therefore necessarily look



at models where the mean field prediction is only approximately correct. This is
generally the case in models where the number of connections per neuron does
not grow proportional to the system size as well as in models with multi-modal
equilibrium distributions [26]. As an example we consider here the simplest case
of a 2 dimensional Ising model.

The main result of this paper is to show how a network of binary neurons can
display stimulus dependent feature linking: correlations between neurons are a
sensitive function of the spatial coherence of the stimulus, without altering the
synaptic connections between the neurons. We restrict our analysis to objects
that can be defined simply in terms of the amount of local supportive evidence
in a compact region of the stimulus space. Examples of such objects are lines,
bars or patches of constant texture: they involve only neurons that are sensitive
to the same, or similar feature values. An spatially incoherent object has by
definition a large variability in features. A spatially coherent object has a clear
dominance of one feature value. We will show how this behavior of feature
linking can be computed analytically. In addition, we will briefly sketch how
this mechanism can also account for segmentation of objects in a scene.

In Section 2, we introduce the basic model of stochastic neuron dynamics and
its relation to spiking neurons. In Section 3, we introduce an abstract model
for the visual cortex consisting of a two-dimensional grid of hyper columns.
Assuming nearest neighbor interaction between neurons that code for identical
feature values and absence of interactions between different feature values, the
model factorizes as a product of Ising models. In Section 4.1, we consider the
case of a stimulus that consists of a number of spatially coherent patches of
constant stimulus value. The model reduces to a simple 2-dimensional Ising
model with constant external field. We review how the mean firing rate and the
correlations can be computed as a function of the stimulus intensity and the
lateral coupling, using mean field theory and linear response theory. We discuss
how these results apply to feature linking when the image consists of several
objects. In Section 4.2, we obtain our main result on dynamic feature linking
showing how the spatial coherence of an object, i.e. the amount of local evidence
in support of a spatially constant feature value, affects the correlations between
neurons. We perform a perturbation expansion around the coherent solution of
section 4.1. Our analytical and simulation results show the dependence of the
mean firing rate and the correlations on the spatial coherence in the stimulus.
In the discussion, we will briefly address the issue of segmentation and outline
how correlations can segment images consisting of several previously learned
objects. Full treatment of this topic will be the subject of a forthcoming paper.

2 Stochastic neuron dynamics

In this section we introduce our basic model. We use binary neurons, which
can be in two states s; = £1. In order to arrive at an equilibrium description,



. Neurons are randomly selected one at

we use so-called sequential dynamics
the time at discrete time steps. The probability of firing for neuron i, given the

current state of the network &, is
1
T(sh = 117) = L1+ tanh (1)), (1)

where [; = Z;ﬂ w;;s;+hi (h; denotes a threshold or external field contribution

for neuron 7). After long times, the probability to observe the network in a state
§ becomes independent of time. When the weights of the network are chosen
symmetrically, this time independent equilibrium distribution is the Boltzmann

distribution and is given by

p(d) =  exp{~fF) 2

with

FE = —% Zwijsisj — thsz
i,j 1

and

Z = Zexp{—ﬂE}.

Note that the form of Eq. 1 and 2 allow us to assume g = 1 without loss of
generality.

2.1 Spike Interpretation

In order to study synchronous firing we need a spike interpretation of the binary
neurons. Updating occurs one neuron at the time at discrete time steps kg, k =
1,...as shown in Fig 1. Let the neuron that is updated at iteration k be denoted
by j(k). Let yi(k) = 1,0 denote whether or not neuron ¢ spikes at iteration k.
Thus y;(k) = 1 & (si(k) = 1A j(k) = 9).

For large networks, each neuron is updated approximately every nry seconds,
with n the number of neurons in the network. If we choose nrg = 7, with 7
fixed of the order of the refractory period of the neuron, every neuron is updated
approximately every refractory period. For large n, the average number of spikes
emitted between ¢ and t+7isgiven by S p_; <wi(k) >= L 37 L(si(k)+1) ~
+(si(t)+1). In the last step, we have made the assumption that the probability
of firing is approximately constant on the fast time scale 7. The average < - > is
over possible random choices of j(k) only and not over ensembles of networks as
is done in Eq. 2. Thus we can interpret s;(¢) = 1 as ”One or no spike emitted
in the interval [t,t 4 7]”, respectively. By construction, no more than one spike

ISequential dynamics is not strictly necessary for an equilibrium formulation, see for in-
stance [31, 32]



can be emitted in the this time interval when 7 is chosen as the refractory
period.

Therefore, in terms of spikes the dynamical rule Eq. 1 becomes that the
neuron integrates all incoming signals with zero time delay over a time 7 and
each incoming spike gives a contribution w;; to the post-synaptic potential. This
spike interpretation is consistent in the sense that first translating a spin state
5(t) to a spike state and then performing spike dynamics yields the same result
as first performing spin dynamics Eq. 1 and then translating a spin state in a
spike state.

3 Architecture

Experimental findings indicate that neurons in the visual cortex that encode
similar features have a larger probability of being connected than neurons that
encode dissimilar features. In addition, these connections are short range and
the probability to find a connection decays with distance. (See [33] for orienta-
tion selectivity , [34] for color selectivity). Neurons that encode for different fea-
tures are presumed to be less connected. Here we will take a simplified approach
and assume 1) that features can take a discrete number of values a = 1,..., m,
2) that neurons encoding for different feature values are not connected and 3)
neurons encoding for the same feature value at neigboring retinal positions are
connected with excitatory symmetric connections w. Thus, the model becomes
a product of independent Ising models, one for each feature value a.

The equilibrium distribution of the feature detecting neurons s in feature
layer «, given a stimulus 2, is given by

Pa(s|z) = Zal(w) exp{% 12]: w;;8iS; + XZ: hi o(z)s;}. (3)

s; = x£1,2 = 1,...,n denote the firing of the neuron with feature preference «
at grid location ¢. w;; is the connectivity matrix, which is w between nearest
neigbors in the grid and zero otherwise.

z denotes the external stimulus, i.e. it consists of a two-dimensional array
of pixel values. h; o(x) describes the stimulus dependence of the neuron with
feature preference a at grid location ¢ on the stimulus z. Tt is well-known, that
nearby neurons in the cortex have overlapping receptive fields. As a result,
the sensory activity reaching nearby neurons can generally not by varied inde-
pendently. However, here we choose to ignore this fact and assume that the
stimulus at each grid location can be varied independently, z = x1, ..., 2,, and
hi o(x) = ho(2;).

Although sensory neurons have a preferred stimulus, this preference is usu-
ally not very specific (coarse coding). That is, neurons in layer a can have
graded responses depending on the amount of overlap with the stimulus. In our



model we will ignore coarse coding. We assume that the stimulus z; is either
compatible with feature a, and ho(2;) = hy or 2; is incompatible with feature
and hq(2;) = h_. In the rest of the paper, we will analyze only layer « and drop
the index «. For this layer, only the presence or absence of feature value « at lo-
cation i is relevant. Therefore, we will redefine 2; = +1 to indicate the presence
or absence of feature a at location i. i.e. ho(z;) = %(1 + zi)hy + %(1 —z;)h_.
h_ can be interpreted as the neural threshold and A4 as the sum of the external
stimulus and the neuron threshold.

4 Stimulus dependent correlations

Consider a visual stimulus that may contain various objects. It is a basic as-
sumption of the present study that objects are detected through the cooperative
effect of the external input and the lateral excitation or inhibition. Thus, objects
are ’encoded’ in the lateral connectivity structure of the network in the sense
that if the stimulus is ’sufficiently similar’ to the lateral structure the neurons
involved in the structure will fire synchronously.

In the simple Ising model as introduced in the previous section, connections
are only between nearest neighbors with identical feature value, which implies
that objects are 'patches’ of constant feature value, as shown in Fig. 2. A
coherent object is therefore a patch of constant features. Incoherence arises
when a subset of the stimulus elicits other feature responses. The coherence is
a spatial property of the stimulus and measures the amount of local evidence
in favor of the hypothesis "patch of feature value « is here’. A family of stimuli
is considered, such that p(x; £ 1) = px. Thus, p; = % corresponds to a fully
incoherent stimulus and p; = 1 corresponds to a fully coherent stimulus.

In this section we will study how the synchrony depends on the parameters
in the network, w, hy and h_, and on the coherence of the stimulus. We first
consider in Section 4.1 a fully coherent stimulus and analyze the correlations as
a function of the lateral coupling and the stimulus strength. From this analysis
we will find under which conditions a visual stimulus composed of constant
patches will display correlated firing within each patch and uncorrelated firing
between patches.

Subsequently, in Section 4.2 we will analyze how the correlations within one
patch depend on the coherence in the stimulus. We will see that correlations
gradually disappear when the incoherence increases.

4.1 Correlated firing in assemblies

We can perform a mean field computation of the mean firing rate in each of the
patches. In addition, we can compute the correlations as well, making use of
the linear response theorem.



The energy of the system is given, in accordance with Eq. 3 by
a1
—F = Zszhz(l‘) + 5 Zwijsisj-
i i,j
Consider the mean field energy

—Eyr = ZSz{h ) + Hi}, (4)

where we have introduced n mean fields H; that approximate the lateral inter-
actions. Define the mean field partition function

AMF = Zexp(_EMF) = 11,2 COSh(hi + HZ)

S

The partition function can be computed in the mean field approximation [35]:

Z = Y exp(=E) =) exp(~Eur + Eur — E)

s s

= Zyr < exp(EMF - E) SMFR JMF exp(< Eyr — E) >) =7 (5)

The mean field approximation is in the last step and is related to the convexity of
the exponential function < exp f >< exp < f >. < - > p denotes expectation
with respect to the MF distribution:

1
=) _E
<f>ur Tt & f(5) exp(—EmF) (6)
From Eq. 6 we obtain < s; >pp= tanh(h;+ H;) = m; and < s;5; >mrp= m;ym;,

where we have introduced the mean field magnetization m;. Thus we obtain
the mean field free energy

—F=log7 = Z]og (2 cosh(h; + H;) Z H;m; + ) Zw”mzmj (7)

The mean fields H; are given by minimizing the free energy:

g, = (L= s = S wm) ®)

or
m; = tanh(hi + Hz) = tanh(z wi;m; + hz) (9)
J
We can go beyond the mean field prediction < s;s; >y r= m;m; in the
following way. First observe that true correlation is

1 d*7 ] a2z

S8 2= dhdh; 7 dhidhy




When we now make use of Eq. 7, we must be aware that the mean fields H;
depend on the external fields h; through Eq. 9. Therefore, using the approximate
free energy of Eq. 7,

9 oH;

d
L ogz = | L 97 9
o8 h; — Oh; OH,

dh;

In the last step we have used Eq. 9, by which all contributions proportional to

OH; .
o5~ vanish. Thus,

1 d dm;
< 88§ DR — —— (Z'mz) =m;m; + ami
' dhj

1
7' dh; (10)

Eq. 10 is known as the linear response theorem and describes how spins correlate
around the mean field solution < s;5; >pp= m;m;.
By differentiating Eq. 9 we derive that

O;5
E <1 J 3 —wij) dm; = dh;
- —m

i i

Thus
dmi

<Si5j>—<5i><5j>zm
"

= A;; (11)

: -1 _  di4 »
Wlth AZ] = 1-m2z — wzj.

The matrix A~ is well known and controls the linear stability of mean field
solutions as a function of the coupling. Negative eigenvalues of A~1 indicate
bifurcation to broken solutions with m # 0. In [36, 37, 38, 39], such a bifurcation
analysis is performed for a large class of neural networks. In the present work we
restrict our attention to stable solutions and use A to investigate the dependence
of the correlations as defined in Eq 11 on the stimulus coherence.

When m; = m independent of i, A = A% can be computed using the Fourier
transform. For the cubic 2 dimensional Ising lattice we find

Ay = Gz [ 17 =) e (1F =T 5). (12

with G(p,y) = (y — 2w(cosp1 +C0Sp2))_1 and [dp = ffw dpy flr dps. E,f
denote the two dimensional coordinate vectors for the location of neuron &, in
the grid, respectively. The result Eq. 12 is a straightforward generalization of
results by [40], obtained for h = m = 0. Eq. 12 can be numerically integrated,
using standard methods.

In Figure 3 we show the mean firing rates and the correlations as a function
of the lateral coupling strength w for various values of the stimulus hA. The



left-hand figures are the theoretical predictions from the mean field computa-
tion, Eq. 9, and from the linear response function, Eq. 12. The right-hand
figures are the corresponding numerical simulations. It is well known that the
critical coupling w, = 0.44 is incorrectly predicted by the mean field compu-
tation w, my = 0.25. Nevertheless, the mean field computation qualitatively
reproduces the main characteristics that are found in the simulations. Sizable
correlations for nearest neighbors are found for small h and w < w.. Long-range
correlations (next-nearest neighbor and more) require h &~ 0 and w ~ w,. We
are mainly interested in the correlations at distance 1, because experimental
findings indicate that significant correlations fall off within several mm [41].
Anatomical studies show that the probability of direct synaptic connections is
high when neurons are separated by this order of distance.

We can apply the above analysis in each of the patches of constant stimulus.
By chosing w ~ w., hy = 0 and h_ < 0 we assure that 1) in regions of the
network that receive coherent input «, correlations establish and neurons fire at
approximately half their maximum firing rate and 2) in the remaining regions
the (o sensitive) neurons are more or less quiescent. Simulations in a network
consisting of a 11 x 11 grid of neurons with open boundary conditions are shown
in Fig. 4.

As is clear from the figure, all cells belonging to a coherently stimulated part
of the stimulus are highly correlated, whereas cells belonging to different regions
(same or different o) are not correlated.

4.2 Coherence dependent correlations

In this section, we will study how correlations depend on the coherence in the
stimulus. A family of stimuli is considered, such that p(z; + 1) = py.

For a fixed stimulus, the network can be divided into two populations of
neurons, those that are stimulated by feature o with local field hy (z; = 1)
and the remaining neurons with local field A_ (z; = —1). We introduce two
mean fields Hy _ which approximate the average contribution from the lateral
interactions in the + and — population, respectively. Thus the mean fields
in Eq. 4 become H; = %(1 + z;)Hy + %(1 — x;)H_. In terms of the average
quantities H1 and hy the free energy Eq. 7 becomes

<F>, = —pilog(2cosh(hy + Hy)—p_log(2cosh(h_ + H_)
_vw ( 2.2 2,2 49 )
9 p_m_ + pymy + 2pyp_myme_
+piHymy +p_H_m_ (13)

where we have introduced the mean field magnetizations my for neurons cou-

pling to the stimulus hy, respectively. < - >, denotes spatial averaging <
— 1 — :

Y >e= 5 0.; ¥i = P+¥Y+ + p_y— for some quantity y. v denotes the number of

neighbors of each neuron (v = 4 for the 2-D Tsing model).
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The mean fields Hy are determined by extremizing the free energy, giving
Hy = H_ = H, with

H = vw(pymy+p_m_)
my = tanh(hy + H) (14)

Thus, in this approximation the lateral contributions to the mean firing rates
are identical (Hy = H_- = H) in the two populations. The coupled system of
Eq. 14 can be solved using standard fixed point iteration. The phase plot is
given for w and py for the choice of stimulus strength Ay = 0 and A = —0.5
in Fig. 5. First note that for fully coherent stimulus (p; = 1) the critical
coupling is w = 0.25, as mentioned before. For incoherent stimuli also a critical
coupling exists which increases with increasing incoherence. In phase 1 and 2,
the network response is ’data dominated’ and ’prior dominated’, respectively.
In phase 1 the neural activity is more determined by the contribution from the
stimulus than by the contribution from the lateral coupling and in phase 2 vise
versa. In phase 1, H & —vw, except on the line py = 1 where H = 0. In phase
2, H ~ vw.

When the stimulus is incoherent, ie. takes different values at different sites
in the network, the neural activity m; = my (Eq. 14) is also site dependent.
The site dependence breaks the translational invariance in the network and the
Fourier transformation, used to arrive at Eq. 12, can no longer be applied. We

L ﬁ around the

can however perform a perturbation expansion in ¢; = ——
i

translationally invariant solution:

A= (A7 +6)7 = A°(1 — eAg + (¢Ag)? + ..

where Ay is the matrix given by Eq. 12 and ¢ is a diagonal matrix. m is the
value of the constant neural activity around which we perturb, whose numerical
value will be fixed later.

The first order correction is given by

<>y 1 I S
6Akl = ZAkJGJA ( )2 /dpG( 7mz)2exp (z(k—l)-p).

The second order correction is given by

54D = ZA,”QA“
<€ >x S 1 LR
/dp1 /dsz p1, ) G(pz,l_mQ)exp (z(k—l) P
<€> 3 7 R o
+W/ 40 ) o (iF =D -5) (16)
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In arriving at Egs. 15 and 16 we have used that )", yx exp(ilz p) & (2m)? <
y >z 8(p) for yx = ek, €2, respectively.

In this perturbation expansion, we have the freedom to chose the homoge-
neous solution m around which we expand. We chose m such that < ¢ >,= 0,

which yields ﬁ =< ﬁ >, and which minimizes < ¢2 >,= pyp_ (1_m1 -
Finally, we obtain
1 oy = 1 2 7 Ro= 3
At = e dpG(p, < Tz e~ <€ > C) exp (’(k -1 -p) + O(€”).
(17)
with 1 1
C (%)2/ PG (p, < > ) (18)

We are now able to compute the effect of stimulus coherence on the corre-
lations between stimulated neurons. We chose the lateral coupling w = 0.35 in
our simulations to be close to the critical coupling but not too close to avoid
problems with mixing of phases. For each coherence, we compute the mean fir-
ing rates from Eq. 14. Subsequently, we compute the correlations from Eqgs. 17
and 18. The results are given in Fig. 6.

The results from our analytical computation are in qualitative agreement
with the simulations. In Fig. 6a and b we see a monotone increase of the
correlations between pairs of stimulated neighboring neurons with the coherence
in the stimulus. In addition, we see that also the average firing of these neurons
is strongly dependent on the coherence. Thus for incoherent stimuli, we observe
low incoherent firing rates and for coherent stimuli we observe a correlated firing
at % their maximal firing rate %

We observe, that the relation between coherence and correlations is strongly
influenced by the strength of the stimulus ;. hy should be close to zero, which
means that the external stimulus and the neuron threshold should have similar
values. Deviations from this assumption are shown in Fig. 6¢,d and Fig. 6e,f,
respectively. For h; > 0 a fully coherent stimulus leads to too high mean firing
rates, which reduces the correlations (see Eq. 11). In this case intermediate
coherence leads to maximal correlations. For h_ < 0 for no stimulus there are
sufficiently high firing rates to produce strong correlations.

In Fig. 7 we give an example of the spiking behavior of the network under
various stimulus conditions.

5 Discussion

5.1 Feature linking

We have proposed to use a network of binary spins to study the experimentally
observed phenomenon of stimulus dependent correlations in visual cortex. As
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a crude approximation to model the cortex we have proposed a separate Ising
model for each of a number of distinct feature values.

We have shown how the correlations depend on the strength of the stim-
ulus, on the strength of the lateral connectivity, as well as on the coherence
of the stimulus. These results were obtained using a mean field computation
for the average firing rates in the stimulated and non-stimulated populations,
and using a linear response calculation for the leading order correlations. These
calculations were verified with numerical simulations.

We conclude that correlations between connected neurons can be present
or absent depending on the coherence in the stimulus. This effect of dynamic
linking is achieved without fast synaptic changes and is caused by the coherence
in the stimulus only. In addition, we observe that also the mean firing rates are
strongly affected by the coherence in the stimulus.

Coherence in the stimulus was controlled by varying the percentage of 'on’
stimuli, independently for each stimulus location. This gives a one parameter
family of stimuli where coherence is in fact the 'luminance’ (fraction of pixels
‘on’). Clearly, other families of stimuli can be chosen. For instance, in [42]
the stimulus itself is modeled as an Ising model. The stimulus is now defined
by two parameters, which are the lateral coupling and the external field. One
can then consider the one dimensional family of stimuli defined by varying the
lateral coupling and with external field zero. Due to the lateral coupling, these
stimuli have the property that for the same luminance, the coherence in the
stimulus is larger than for those considered in this paper. Fully coherent stimuli
and fully incoherent stimuli are the same in both approaches. One can analyze
the phase diagram in the mean field approach, as was done by [42] and one can
probably compute the correlations using the linear response computation, in a
similar way as was done in this paper. It should be expected that the results
from such an analysis will be qualitatively the same as those obtained in this
paper, with the difference that one will observe increased correlations at the
same luminance level, compared to the results presented in this study.

Clearly, we are not proposing the Ising model as a serious computational
model for the cortex. An important restriction of the present work is that fea-
ture sensitivity of neurons has been discretized and neurons have been assumed
to be only sensitive to one feature value. In addition, we assumed that only
neurons that are sensitive to identical features are coupled horizontally. One
should formulate models with more complex horizontal interactions, for instance
fully connected excitatory interaction within hyper columns or inhibition within
hyper columns which leads to competition between feature detectors (Potts
model). Tn the present model, receptive fields are non-overlapping (spatially)
and are strongly specialized. One should investigate the effects of redundancy
such as spatial overlap and coarse coding on the correlations.

The analytical results obtained pertain to the equilibrium situation. To re-
late the correlations to functional behavior, it is important to establish at what
time scales the correlations establish after onset of the stimulus. For unfrus-
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trated systems of the type that we have studied so far, this may be analyzed
within the linear response approach.

In the present work, we have established the stimulus dependence of corre-
lated firing for fixed lateral (and feed-forward) connections. In a more realistic
network, the lateral connectivity would arise from learning. The connections
that will establish will be between those neurons that are correlated in the
stimulus environment. Tt is interesting to note that the most straightforward
learning paradigm for stochastic networks, i.e. the Boltzmann Machine learning
rule, is indeed based on correlated activity < s;s; >.

5.2 Scene segmentation

In this paper we have shown, how correlations can establish in stochastic net-
works, and how these correlations depend on the coherence in the stimulus en-
semble. We have demonstrated how this coherence dependence can be analyzed
theoretically using mean field and linear response theory.

However, the simple Ising model is quite far removed from how it is generally
assumed that patterns are stored in cortex. In addition, it is not clear how this
mechanism can be used for scene segmentation. Therefore, in this section we will
give a heuristic argument how the main ideas of this paper can be accommodated
in a more realistic setting. A more thorough treatment will be the subject of a
forthcoming paper.

Consider a network of n neurons s; = +1, each encoding a different feature
[25] (or orbit assembly [23]). Suppose that the objects are non-overlapping, ie.
feature appear uniquely in one object and not in others. Suppose the objects
are represented neurally by p patterns ¢/ = £1,p=1,...,p. &' = £1 denotes
presence or absence of feature 7 in object y. Suppose that as a result of training,
positive connections w4 develop between neurons encoding features of the same
object and negative connections w_ develop between neurons encoding features
of different objects. Examples of such learning rules are given in [23, 25].

The energy of the system in the absence of external stimulus is given by:

—F = ZZwijSiSj +628i
T i>i i

By choosing # = —w_n(2/p — 1) one can easily show that the patterns &/ are
global minima of E. Thus the equilibrium distribution p(s) = % exp(—BE(s))
has p peaks around the global minima. Additionally, local minima of F may
give rise to small subpeaks, which we will ignore here. As a very crude approx-
imation, therefore, we have

< 8; >= Zsip(s) ~ EZE’;‘ — 2;1)
p p
s 2
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and

4 1
< sis; > —< s ><s;> ~ —(1—-) when i jbelong to the same pattern
J J P P

Q

-—— when 2, j belong to different patterns

Thus, in the absence of a stimulus all neurons fire with the same rate, but this
firing is correlated depending on whether the neurons encode features belonging
to the same or different objects.

Consider now that an external visual scene is presented consisting of a subset
S of ¢ objects out of the p objects £#. Now, an additional term should be
added to E of the form — 37, hfs;, with hf = h}" &/ is the external field
contribution due to the subset of patterns that are present in the scene. h is a
free parameter, related to the strength of the feed-forward connections between
the retinal image and the present layer. The effect is that the global minimum
of F will by attained by £, u € S, whereas the remaining objects will become
local minima, with energy 2hn/p higher than the minimal energy. By the same
argument as above we have

9_
<85> N | when i belongs to u € S
q

X

-1 when i belongs to p ¢ S

and

4 1
<885 > — <5 >< 55> R a(l - g) when 7 and j belong to the same p € S

2
!
|

when 7 and j belong to different p,v € S

X
o

when i or j belong to u ¢ S

Thus, all neurons that encode features that are present in the scene fire with the
same rate and all other neurons are quiescent. The firing between active neurons
is correlated depending on whether the neurons encode features belonging to the
same or different objects.

A comment is in order here on the validity of the approximation to replace
the sum over all states by just the maxima of the probability distribution. When
8 — oo this approximation is exact. However, in this limit, the transition
times between the ¢ different phases also become infinite, which implies that
any biologically reasonable dynamics will get stuck in one of the phases. In
other words, ergodicity is broken and ensemble average and time average can
no longer be identified. Thus £ should be chosen small enough such that the
transition times between the optima are reasonably small. For lower 3, the bold
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approximation above gets worse and worse, because also sub-optimal states will
contribute significantly to the sum over states. However, as was shown in [43]
for continuous variables, a Gaussian approximation can summarize effectively
the contribution of all states in the ¢ optimal bases of attraction. It should be
expected that these contributions do not qualitatively change the conclusions
drawn above.

The difference between the mechanism for feature binding based on oscil-
lations and the above mechanism is quite striking. The oscillatory solution to
segmentation is to represent the different objects one after another in time like
a periodic movie [23, 25]. The solution based on correlated activity is on the
other hand not periodic but stationary. There exists a time-independent equi-
librium probability distribution and the network is given a stochastic dynamics
such that over long times all states are visitied with this probability. As we
saw, this leads to time-independent correlations between neurons depending to
which object they belong.
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Figure 1: Spike interpretation for network of stochastic binary neurons for the
simple case of n = 3. Time for update of the neuron states is discretized
as t = krg,k = 1,.... Top line: For each k one neuron j(k) is chosen at
random. Bottom 3 lines: Neuron j(k) is updated using Glauber dynamics
(solid horizontal lines). The state s; of each neuron remains unchanged when
other neurons are updated (dashed lines). Spikes are emitted when the neuron
update and the new state is s; = 1 (vertical solid lines).
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Figure 2: In the simple Ising model, connections are only between nearest neigh-
bors with identical feature value, which implies that objects are ’patches’ of
constant feature value. Stimulus values in the stimulus layer only affect neurons
at the same same location in the feature layer(s). In regions where the stimulus
value #; = « (dark areas) the local field contribution to neuron s; in layer « is
hy. In the remaining regions x; # « (light areas) and the local field contribution
to neuron s; in layer « is h_.
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Figure 3: Average neuron activity and correlations for coherent stimulus (z; = 1
for all 7) as a function of lateral coupling for various values of stimulus strength
hy = 0 (solid), hy = 0.1 (dashed) and hy = 0.3 (dotted). a) and b) Average
neuron activity m versus coupling w. ¢) and d) Nearest neighbor correlations
Ap1 versus coupling w. ¢) and f) Next-nearest neighbor correlations Ags versus
coupling w. a), ¢) and e) are results of the mean field computation. b), d)
and f) are simulations. The simulations are obtained with a grid of 10 x 10
neurons with periodic boundary conditions. Results are computed by temporal
averaging over 5000 updates per neuron. Errors in all quantities due to spatial

averaging are less than 0.05
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Figure 4: Top Left: sensory input to layer « is present in the two black areas
(h = hy = 0) and absent elsewhere (h = h_ = —4), w = 0.4. Top Right:
Correlation A;; with ¢ the neuron located at lattice site (6,4). White (black)
encodes < s;5; > — < 57 >< s; >= 0, 1, respectively. Bottom Left: Correlation
with point (3,3). Bottom Right: Correlation with point (7,7).
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Figure 5: Phase plot as a function of lateral coupling w and stimulus coherence

p4+. hy =0and h_ = —0.5.
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Figure 6: Correlations Ag; (solid line), my (dashed line) and m_ (dash-dotted
line) as a function of stimulus coherence p;. Left-hand figures are analytical
results with w = 0.23. Right-hand results are simulations with w = 0.35 in
a 10 x 10 grid with periodic boundary conditions. Results are computed by
temporal averaging over 5000 updates per neuron. Errors in all quantities due
to spatial averaging are less than 0.05 a) and b) hy = 0 and h_ = —0.5. ¢) and
d) hy =0.1 and h_ = —0.5. ¢) and f) Ay = —0.1 and h_ = —0.5.

24



e -

N S ] (i 1

0.2 0.4

0.04 //\
0.1 02 "7 7777
0.02 M/LA

0 0 0
-50 0 50 -50 0 50 -50 0 50

Figure 7: Example of the spiking behavior of the network under various stimulus
conditions. Top row shows three stimulus conditions with increasing coherence
of feature a. Second and third rows show a short segment of the spike trains
of two neighboring neurons that both receive stimulus a. The total length of
the train is 50 7 seconds. Bottom row shows time-delayed cross correllograms
< 5;(0)s;(t) > (solid line) and square mean firing rates < s; >2 (dashed line)
as a function of time difference .



