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Abstract

It is well established that cortical neurons display synchronous firing for some stimuli and
not for others. The resulting synchronous subpopulation of neurons is thought to form the
basis of object perception. In this paper this ’binding’ problem is formulated for Boltzmann
Machines. Feed-forward connections implement feature detectors and lateral connections im-
plement memory traces or cell assemblies. We show, that dynamic linking can be solved in
the Ising model where sensory input provides local evidence. The lateral connections in the
hidden layer provide global correlations between features that belong to the same stimulus
and no correlations between features from different stimuli.

1 Introduction

It is well established that cortical neurons display synchronous firing for some stimuli and not for
others (Gray et al., 1989; Engel et al., 1990). The resulting synchronous subpopulations of neurons
(cell assemblies) are thought to form the basis of segmentation and object perception (Julesz, 1971;
Marr, 1982). The role of individual cells is to represent important ’atomic’ visual features, such as
edges, corners, velocities, colors, etc. Objects can be defined as a collection of these features: The
cell assembly is a neural representation of the entire object.

There are two major complications with this idea. 1) The cells in an assembly encode different
visual features. Different objects are represented as different combinations of active features. These
neurons can only fire synchronously, if there exist direct or indirect synaptic connections between
them. But if such a connection exists, why do these neurons not fire synchronously at all times?
This problem will be referred to as dynamic linking. 2) When more than one coherent object
is present in the scene, more than one cell assembly will be active. How can be determined to
which cell assembly an active cell belongs? As an example consider a red square and a blue circle
that are presented simultaneously. If there are separate neural pathways for shape and color, a
representation for 'red’, blue’, 'square’ and ’circle’ will be active. It can then no longer be decided
which features belong to the same object (Treismann and Schmidt, 1982).

Both problems are jointly referred to as the binding problem. A popular solution to the second
problem has been proposed by several authors. If synchronous firing occurs within one cell assembly
in the form of a collective oscillatory firing pattern, then different assemblies can be distinguished
by either their frequency or phase (Malsburg and Schneider, 1986).

In this paper the binding problem is formulated and studied in the context of Boltzmann Ma-
chines. Feed-forward connections implement feature detectors and lateral connections implement
memory traces. Boltzmann Machines provide an attractive model to study the binding problem,
because the interaction of feed-forward connections and lateral connections can be analytically
studied in the equilibrium distribution. In this way the ’synchronous firing’ can be related to well
know equilibrium properties of spin systems.

We propose a solution to dynamic linking as described above. The solution is related to the
existence of long correlation lengths is spin systems near the critical temperature. This phe-
nomenon occurs in networks that have ’sufficient’ lateral connectivity. As an example we take the
2 dimensional Ising model.



2 Boltzmann Machines

Boltzmann Machines are stochastic networks. The neurons can be in two states o; = 0,1 (neuron
language) or 1 (spin language). Using so-called sequential dynamics, neurons are randomly
selected one at the time at discrete time steps. The probability of firing for neuron 4 given the
current state of the network §is given by

1
T(s,=1|3) = 5(1 + tanh(8h;)).
hi =), wi;jS; (5o = 1 and wjp denotes a threshold for neuron ¢). After long times, the probability
to observe the network in a state § becomes independent of time. When the weights of the

network are chosen symmetrically, this time independent equilibrium distribution is the Boltzmann
distribution and is given by

p(3) = % exp{f3 Z W;;8i8; }
2y}

7 = Z exp{ Z W;;8i8;}
5 4,7

The proposed Boltzmann Machine architecture is given in Fig. 1. We will assume that the network
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Figure 1: Boltzmann Machine architecture with feed-forward and lateral connections. Input is pro-
vided by Z = (z1,...,,), with x; real-valued or binary valued. Hidden units are §= (s1,..., sx),
with S5 = +1.

at any time will receive some kind of input and study the Boltzmann distribution on the hidden
layer.

2.1 Spike Interpretation

In order to study synchronous firing we need a spike interpretation of the Boltzmann Machine.
This is given in figure 2. The time steps should be chosen such that the average time between
updates of one neuron is of the order of the refractory period of the neuron.

3 Correlation lengths

Consider the task where the input encodes a sensory domain, such as the retina, where several
stimuli are presented simultaneously. Thus the input z; = 1 at the locations of the simuli and
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Figure 2: Spike interpretation of Boltzmann Machine. Time is discrete such that the time between
two updates of one neuron is of the order of the refractory period 7 of the neuron. If s;, = 1 in
one time interval, the neuron emits a spike. If s; = 1 for a long period, the neuron fires at the
maximum firing rate 1/7.

0 elsewhere. The task of the network is to represent these inputs in the hidden layer, such that
the activity between the neurons that encode one stimulus are correlated and the activity between
neurons that encode for different stimuli not. A convenient quantity that expresses correlation
between neurons j and k is the correlation function:

Lji = (s58K) — (85) {sk)

The correlation function depends on the temperature 5 and on the connectivity of the network. For
instance, in a d-dimensional Ising spin system, the connections are only between nearest neurons
in a d-dimensional grid. I', can be calculated in the Landau approximation and takes the form

I, o r?~4exp(—r/€)

with r the distance in the grid. £ depends on the temperature of the system. Around the critical
temperature T¢, £ o< |T — TC|_%. In a 1-dimensional Ising system, there is no phase transition and
no large range correlations exist. Thus in order to have long range correlations between neurons
that encode the same stimulus, sufficient lateral connectivity must be present to display a phase
transition around the critical temperature. Long correlation lengths are obtained for unfrustrated
systems such as the Ising model, and for frustrated systems, such as spin glasses and Hopfield-type
of attractor neural networks. The correlation lenght as a function of temperature is schematically
given in Figure 3.

4 Binding

First we give the explicit relation between 0,1 coding and +1 coding for the Ising model. The
Ising model Hamiltonian is given by:

H = -W 8:85 — stz
) 7

(i

= —w Z 0,0; —h Z oi + const.
(45) i

W, H and w, h are the lateral connectivity and external magnetic field in the £1 and 0,1 repre-
sentation, respectively. (i5) denotes the sum over all pairs of neighbors in the Ising lattice. It is
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Figure 3: Correlation lenght as a function of temperature. Large scale correlations are necessary
for binding and develop when T = T.. For T' = T, {s;) = 0, which means that the neurons fire at
50 % of their maximal firing rate.

easy to show that w = 4W and h = 2(H — aW). « is the number of neighbors of each Ising spin
(a = 4 for the 2D Ising model).

We will apply the Ising model to simulate the binding of features in the presence of a stimulus.
W will be assumed constant for all neighbor connections. H will be different depending on whether
neurons receive stimulus input or not.

First of all, we must ensure that no large scale correlations and low firing rates develop outside
the cell assemblies. Therefore, we assume that the total external field for neuron ¢ H;, = H-+ H Z'" ,
with H;" the stimulus contribution, and H~ a constant inhibitory external field all hidden neurons.
This global inhibition could be due to a lateral inhibition mechanism but will be left unspecified at
this point. Outside the cell assemblies the neural activity will be low and no large scale correlations
will develop.

In order to assure that long correlation lenghts occurs in the presence of stimuli for subsets
of neurons that encode the different objects (cell assemblies), we need H = 0 and T' = T,. Thus
the stimulus strength should cancel the inhibitory field H;f = —H~. The architecture is given in

Figure 4

The result of a small simulation with 2 objects in an 11 x 11 Ising lattice is shown in Figure 5.
The values of H and W translate in neural connections w = 4 and stimuli: h = —2Wa = —8 =
h* + h~ (stimulus); h = 2(H~ — Wa) = =16 = h™ (no stimulus). Thus h* = 8 and h~ = —16.

At the stimulus locations, the neurons have (¢;) = 0.5. Away from the stimuli, (;} = 0

As is clear from the figure, all cells belonging to the same object are highly correlated, whereas
cells belonging to different objects are not correlated. So, the network concludes the existance of
2 objects.

5 Discussion

We have shown how long range correlations in spin models can be used to solve a part of the
binding problem, the dynamic linking problem. We have shown, that dynamic linking can be
solved in the Ising model. This model contains a sensory layer and a hidden layer. The hidden
layer represents an interpretation of the sensory input. Sensory input provides local evidence. The
lateral connections in the hidden layer provide global correlations between features that belong to
the same stimulus and no correlations between features from different stimuli.

Several things are still unclear. First of all, two cell assemblies should merge into one if the
distance between them is very small. In that case the sensory input coming from the small area



Figure 4: Boltzmann Machine architecture used for simulation of binding phenomenon. All neurons
in the sensory layer (top) are only connected to the corresponding neuron in the hidden layer
(bottom). Neurons in the hidden layer receive sensory input of strength 1 when a stimulus in the
sensory layer is present (dark areas).

between the two cell assemblies is overruled by the urge to create large coherent objects. In our
model, this means that the correlated activity must be able to spread somewhat outside the edges
of an object. From Figure 5 can be seen that this does happen.

Our results were obtained in a small network. More robust correlations will develop in larger
networks, which we are currently investigating.

Animal brain studies have shown the existance of ’oscillations’ of activity with a frequency of
40 Hz. In our model binding occurs when the neurons fire at half of the maximum firing rate,
leading to oscilations of 167 Hz, if one assumes a refractory period of 3 ms. These frequencies are
not very dissimilar, given the crude assumptions of our model.

In this paper, we have only studied correlations at 0 time delay. In (Ginzburg and Sompolinsky,
1994), delayed correlations were studied in networks composed of several sub-populations. Each
sub-population is fully connected, and connections between sub-populations only depend on the
sub-populations and not on the individual neurons. The issue of dynamic linking was not addressed
there.

Clearly, we are not proposing the Ising model as a serious computational model for the cortex
and it should be investigated whether and how this mechanism can be extended to other network
architectures. In a more realistic network, the lateral connectivity would arise from learning. As
a result, an inhomogeneous network would result with both inhibitory and excitatory connections.
The resulting network will be more like a spin glass than an Ising model. It is known, that long
range correlations also exist in these frustrated systems.

There are several ways to learn the lateral connections strengths from an environment. For
instance, a Hebb learning rule based on 1) correlated activity (s;s;) or 2) on non-correlated activity
(ss) (s;). If correlation plays a functional role, the first rule seems most promising. However, since
correlations arise naturally near criticality, also the second rule may be able to yield correlated
patterns of activity, whereafter the effects of rule 1) and 2) become identical.
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Figure 5: Top Left: sensory input containing 2 black objects (H = Ht + H~) against a white
background (H = H™). Ht = —H~ =4, W =1, T =~ T.. Top Right: Correlation I';; with
the neuron located at lattice site (6,4). Since W > 0, I" > 0. White (black) encodes I' = 0,1,
respectively. Bottom Left: Correlation with point (3,3). Bottom Right: Correlation with point
(7,7).
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