
Mach Learn
DOI 10.1007/s10994-012-5278-7

Optimal control as a graphical model inference problem

Hilbert J. Kappen · Vicenç Gómez · Manfred Opper

Received: 3 December 2010 / Accepted: 11 January 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract We reformulate a class of non-linear stochastic optimal control problems in-
troduced by Todorov (in Advances in Neural Information Processing Systems, vol. 19,
pp. 1369–1376, 2007) as a Kullback-Leibler (KL) minimization problem. As a result, the
optimal control computation reduces to an inference computation and approximate infer-
ence methods can be applied to efficiently compute approximate optimal controls. We show
how this KL control theory contains the path integral control method as a special case. We
provide an example of a block stacking task and a multi-agent cooperative game where we
demonstrate how approximate inference can be successfully applied to instances that are too
complex for exact computation. We discuss the relation of the KL control approach to other
inference approaches to control.

Keywords Optimal control · Uncontrolled dynamics · Kullback-Leibler divergence ·
Graphical model · Approximate inference · Cluster variation method · Belief propagation

1 Introduction

Stochastic optimal control theory deals with the problem to compute an optimal set of ac-
tions to attain some future goal. With each action and each state a cost is associated and the
aim is to minimize the total future cost. Examples are found in many contexts such as motor

Editor: Kevin P. Murphy.

H.J. Kappen · V. Gómez (�)
Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ
Nijmegen, The Netherlands
e-mail: v.gomez@science.ru.nl

H.J. Kappen
e-mail: b.kappen@science.ru.nl

M. Opper
Department of Computer Science, TU Berlin, 10587 Berlin, Germany
e-mail: opperm@cs.tu-berlin.de

mailto:v.gomez@science.ru.nl
mailto:b.kappen@science.ru.nl
mailto:opperm@cs.tu-berlin.de

Mach Learn

control tasks for robotics, planning and scheduling tasks or managing a financial portfolio.
The computation of the optimal control is typically very difficult due to the size of the state
space and the stochastic nature of the problem.

The most common approach to compute the optimal control is through the Bellman equa-
tion. For the finite horizon discrete time case, this equation results from a dynamic program-
ming argument that expresses the optimal cost-to-go (or value function) at time t in terms
of the optimal cost-to-go at time t + 1. For the infinite horizon case, the value function is
independent of time and the Bellman equation becomes a recursive equation. In continuous
time, the Bellman equation becomes a partial differential equation.

For high dimensional systems or for continuous systems the state space is huge and the
above procedure cannot be directly applied. A common approach to make the computation
tractable is a function approximation approach where the value function is parameterized
in terms of a number of parameters (Bertsekas and Tsitsiklis 1996). Another promising
approach is to exploit graphical structure that is present in the problem to make the compu-
tation more efficient (Boutilier et al. 1995; Koller and Parr 1999). However, this graphical
structure is in general not inherited by the value function, and thus the graphical representa-
tion of the value function may not be appropriate.

In this paper, we introduce a class of stochastic optimal control problems where the con-
trol is expressed as a probability distribution p over future trajectories given the current state
and where the control cost can be written as a Kullback-Leibler (KL) divergence between p

and some interaction terms. The optimal control is given by minimizing the KL divergence,
which is equivalent to solving a probabilistic inference problem in a dynamic Bayesian
network. The optimal control is given in terms of (marginals of) a probability distribution
over future trajectories. The formulation of the control problem as an inference problem di-
rectly suggests exact inference methods such as the Junction Tree method (JT) (Lauritzen
and Spiegelhalter 1988) or a number of well-known approximation methods, such as the
variational method (Jordan 1999), belief propagation (BP) (Murphy et al. 1999), the cluster
variation method (CVM) or generalized belief propagation (GBP) (Yedidia et al. 2001) or
Markov Chain Monte Carlo (MCMC) sampling methods. We refer to this class of problems
as KL control problems.

The class of control problems considered in this paper is identical as in Todorov
(2007, 2008, 2009), who shows that the Bellman equation can be written as a KL diver-
gence of probability distributions between two adjacent time slices and that the Bellman
equation computes backward messages in a chain as if it were an inference problem. The
novel contribution of the present paper is to identify the control cost with a KL divergence
instead of making this identification in the Bellman equation. The immediate consequence
is that the optimal control problem is identical to a graphical model inference problem that
can be approximated using standard methods.

We also show how KL control reduces to the previously proposed path integral control
problem (Kappen 2005) when noise is Gaussian in the limit of continuous space and time.
This class of control problem has been applied to multi-agent problems using a graphical
model formulation and junction tree inference in Wiegerinck et al. (2006, 2007) and ap-
proximate inference in van den Broek et al. (2008a, 2008b). In robotics, Theodorou et al.
(2009, 2010a, 2010b) has shown the path integral method has great potential for applica-
tion. They have compared the path integral method with some state-of-the-art reinforcement
learning methods, showing very significant improvements. In addition, they have success-
ful implemented the path integral control method to a walking robot dog. The path integral
approach has recently been applied to the control of character animation (da Silva et al.
2009).

Mach Learn

2 Control as KL minimization

Let x = 1, . . . ,N be a finite set of states, xt denotes the state at time t . Denote by
pt(xt+1|xt , ut) the Markov transition probability at time t under control ut from state xt

to state xt+1. Let p(x1:T |x0, u0:T −1) denote the probability to observe the trajectory x1:T

given initial state x0 and control trajectory u0:T −1.
If the system at time t is in state x and takes action u to state x ′, there is an associated

cost R̂(x,u, x ′, t). The control problem is to find the sequence u0:T −1 that minimizes the
expected future cost

C(x0, u0:T −1) =
∑

x1:T
p(x1:T |x0, u0:T −1)

T∑

t=0

R̂(xt , ut , xt+1, t)

=
〈

T∑

t=0

R̂(xt , ut , xt+1, t)

〉
(1)

with the convention that R̂(xT , uT , xT +1, T) = R(xT ,T) is the cost of the final state and 〈 〉
denotes expectation with respect to p. Note, that C depends on u in two ways: through R̂

and through the probability distribution of the controlled trajectories p(x1:T |x0, u0:T −1).
The optimal control is normally computed using the Bellman equation, which results

from a dynamic programming argument (Bertsekas and Tsitsiklis 1996). Instead, we will
consider the restricted class of control problems for which C in (1) can be written as a
KL divergence. As a particular case, we consider that R̂ is the sum of a control dependent
term and a state dependent term. We further assume the existence of a ‘free’ (uncontrolled)
dynamics qt (xt+1|xt), which can be any first order Markov process that assigns zero proba-
bility to physically impossible state transitions.

We quantify the control cost as the amount of deviation between pt(xt+1|xt , ut) and
qt (xt+1|xt) in KL sense. Thus,

R̂(xt , ut , xt+1, t) = log
pt(xt+1|xt , ut)

qt (xt+1|xt)
+ R(xt , t), t = 0, . . . , T − 1 (2)

with R(x, t) an arbitrary state dependent control cost. Equation (1) becomes

C(x0,p) = KL(p||ψ)

=
∑

x1:T
p(x1:T |x0) log

p(x1:T |x0)

ψ(x1:T |x0)

= KL(p||q) + 〈R〉, (3)

ψ(x1:T |x0) = q(x1:T |x0) exp

(
−

T∑

t=0

R(xt , t)

)
. (4)

Note, that C depends on the control u only through p. Thus, minimizing C with respect
to u yields: 0 = dC

du
= dC

dp

dp

du
, where the minimization with respect to p is subject to the nor-

malization constraint
∑

x1:T p(x1:T |x0) = 1. Therefore, a sufficient condition for the optimal
control is to set dC

dp
= 0. The result of this KL minimization is well known and yields the

Mach Learn

“Boltzmann distribution”

p(x1:T |x0) = 1

Z(x0)
ψ(x1:T |x0) (5)

and the optimal cost

C(x0,p) = − logZ(x0) = − log
∑

x1:T
q(x1:T |x0) exp

(
−

T∑

t=0

R(xt , t)

)
(6)

where Z(x0) is a normalization constant (see Appendix A). In other words, the optimal
control solution is the (normalized) product of the free dynamics and the exponentiated
costs. It is a distribution that avoids states of high R, at the same time deviating from q as
little as possible. Note that since q is a first order Markov process, p in (5) is a first order
Markov process as well.

The optimal control in the current state x0 at the current time t = 0 is given by the
marginal probability

p(x1|x0) =
∑

x2:T
p(x1:T |x0). (7)

This is a standard graphical model inference problem, with p given by (5). Since ψ is a
chain, we can compute p(x1|x0) by backward message passing:

βT (xT) = 1,

βt (xt) =
∑

xt+1

ψt(x
t , xt+1)βt+1(xt+1),

p(xt+1|xt) ∝ ψt(xt , xt+1)βt+1(xt+1).

The interpretation of the Bellman equation as message passing for the KL control prob-
lems was first established in Todorov (2008). The difference between the KL control compu-
tation and the standard computation using the Bellman equation is schematically illustrated
in Fig. 1.

The optimal cost, (6), is minus the log partition sum and is the expectation value of
the exponentiated state costs

∑T

t=0 R(xt , t) under the uncontrolled dynamics q . This is a
surprising result, because it means that we have a closed form solution for the optimal cost-
to-go C(x0,p) in terms of the known quantities q and R.

A result of this type was previously obtained in Kappen (2005) for a class of continuous
non-linear stochastic control problems. Here, we show that a slight generalization of this
problem (gai(x, t) = 1 in Kappen (2005)) is obtained as a special case of the present KL
control formulation. Let x denote an n-dimensional real vector with components xi . We
define the stochastic dynamics

dxi = fi(x, t)dt +
∑

a

gia(x, t)(uadt + dξa) (8)

with fi an arbitrary function, dξa an m-dimensional Gaussian process with covariance ma-
trix 〈dξadξb〉 = νabdt and ua an m-dimensional control vector. The distribution over trajec-

Mach Learn

Dynamics: pt(xt |xt−1, ut−1) → dynamic programming → Bellman Equation
Cost: C(x0, u) = 〈R̂〉 Cost-to-go: J (x0)

↓ ↓
restricted class of problems approximate J

↓ ↓
Dynamics: pt(xt |xt−1) → approximate inference → approximation
C(x0,p) = KL(p||ψ) of optimal u

Fig. 1 Overview of the approaches to computing the optimal control. (Top left) The general optimal control
problem is formulated as a state transition model p that depends on the control (or policy) u and a cost
C(u) that is the expected R̂ with respect to the controlled dynamics p. The optimal control is given by the
u that minimizes a cost C(u). (Top right) The traditional approach is to introduce the notion of cost-to-go
or value function J , which satisfies the Bellman equation. The Bellman equation is derived using a dynamic
programming argument. (Bottom right) For large problems, an approximate representation of J is used to
solve the Bellman equation which yields the optimal control. (Bottom left) The approach in this paper is to
consider a class of control problems for which C is written as a KL divergence. The computation of the
optimal control (optimal p) becomes a statistical inference problem, that can be approximated using standard
approximate inference methods

tories is given by

p(xdt :T |x0, u0:T −dt) =
T −dt∏

s=0

N (xs+dt |xs + (f s + gsus)dt, gsν(gs)T dt) (9)

with f t = f (xt , t) and the distribution over trajectories under the uncontrolled dynamics is
defined as q(xdt :T |x0) = p(xdt :T |x0, u0:T −dt = 0).

For this particular choice of p and q , the control cost in (3) becomes (see Appendix B
for a derivation)

C(x,u(t → T)) =
〈
φ(x(T)) +

∫ T

t

ds
1

2
u(x(s), s)T ν−1u(x(s), s) + R(x(s), s)

〉
(10)

where 〈 〉 denotes expectation with respect to the controlled dynamics p, where the sums
become integrals and where we have defined φ(x) = R(x,T).

Equations (8) and (10) define a stochastic optimal control problem. The solution for the
optimal cost-to-go for this class of control problems can be shown to be given as a so-
called path integral, an integral over trajectories, which is the continuous time equivalent
of the sum over trajectories in (6). Note, that the cost of control is quadratic in u, but of a
particular form with the matrix ν−1 in agreement with Kappen (2005). Thus, the KL control
theory contains the path integral control method as a particular limit. As is shown in Kappen
(2005), this class of problems admits a solution of the optimal cost-to-go as an integral over
paths, which is similar to (6).

2.1 Graphical model inference

In typical control problems, x has a modular structure with components x = x1, . . . , xn.
For instance, for a multi-joint arm, xi may denote the state of each joint. For a multi-agent
system, xi may denote the state of each agent. In all such examples, xi itself may be a multi-
dimensional state vector. In such cases, the optimal control computation, (7), is intractable.
However, the following assumptions are likely to be true:

Mach Learn

Fig. 2 Block stacking problem: the objective can be (but is not restricted to) to stack the initial block con-
figuration (left) into a single stack (right) through a sequence of single block moves to adjacent positions
(middle)

– The uncontrolled dynamics factorizes over components

qt (xt+1|xt) =
n∏

i=1

qt
i (x

t+1
i |xt

i).

– The interaction between components has a (sparse) graphical structure R(x, t) =∑
α Rα(xα, t) with α a subset of the indices 1, . . . , n and xα the corresponding variables.

Typical examples are multi-agent systems and robot arms. In both cases the dynamics of
the individual components (the individual agents and the different joints, respectively) are
independent a priori. It is only through the execution of the task that the dynamics become
coupled.

Thus, ψ in (4) has a graphical structure that we can exploit when computing the
marginals in (7). For instance, one may use the junction tree (JT) method, which can be
more efficient than simply using the backward messages. Alternatively, we can use any of
a large number of approximate graphical model inference methods to compute the optimal
control. In the following sections, we will illustrate this idea by applying several approxi-
mate inference algorithms in two different tasks.

3 Stacking blocks (KL-blocks-world)

Consider the example of piling blocks into a tower. This is a classic AI planning task (Russell
et al. 1996). It will be instructive to see how a variant of this problem is solved as a stochastic
control problem, As we will see, the optimal control solution will in general be a mixture
over several actions. We define the KL-blocks-world problem in the following way: let there
be n possible block locations on the one dimensional ring (line with periodic boundaries) as
in Fig. 2, and let xt

i ≥ 0, i = 1, . . . , n, t = 0, . . . , T denote the height of stack i at time t . Let
m be the total number of blocks.

At iteration t , we allow to move one block from location kt and move it to a neighboring
location kt + lt with lt = −1,0,1 (periodic boundary conditions). Given kt , lt and the old
state xt−1, the new state is given as

xt
kt = xt−1

kt − 1, (11)

xt
kt +lt = xt−1

kt +lt
+ 1 (12)

and all other stacks unaltered. We use the uncontrolled distribution q to implement these
allowed moves. For the purpose of memory efficiency, we introduce auxiliary variables
st
i = −1,0,1 that indicate whether the stack height xi is decremented, unchanged or incre-

mented, respectively. The uncontrolled dynamics q becomes q(kt) = U (1, . . . , n), q(lt) =

Mach Learn

U (−1,0,+1),

q(st |kt , lt) =
n∏

i=1

q(st
i |kt , lt),

q(st
i |kt , lt) =

⎧
⎪⎨

⎪⎩

δst
i
,−1 for kt = i, lt = ±1,

δst
i
,+1 for kt + lt = i, lt = ±1,

δst
i
,0 otherwise

where U (·) denotes the uniform distribution. The transition from xt−1 to xt is a mixture over
the values of kt , lt :

q(xt |xt−1) =
∑

kt ,lt

n∏

i=1

q(xt
i |xt−1

i , kt , lt)q(kt)q(lt), (13)

q(xt
i |xt−1

i , kt , lt) =
∑

st
i

q(xt
i |xt−1

i , st
i)q(st

i |kt , lt), (14)

q(xt
i |xt−1

i , st
i) = δ

xt
i
,xt−1

i
+st

i
. (15)

Note, that there are combinations of xt−1
i and st

i that are forbidden: we cannot remove a
block from a stack of size zero (xt−1

i = 0 and st
i = −1) and we cannot move a block to a

stack of size m (xt−1
i = m and st

i = 1). If we restrict the values of xt
i and xt−1

i in the last line
above to 0, . . . ,m these combinations are automatically forbidden.

Figure 3 shows the graphical model associated with this representation. Notice that the
graphical structure for q is efficient compared to the naive implementation of q(xt |xt−1) as
a full table. Whereas the joint table requires mn entries, the graphical model implementation
requires T n tables of sizes n × 3 × 3 for p(st |kt , lt) and n × n × 3 for p(xt |xt−1, st). In ad-
dition, the graphical structure can be exploited by efficient approximate inference methods.

Finally, a possible state cost can be defined as the entropy of the distribution of blocks:

R(x) = −λ
∑

i

xi

m
log

xi

m
, (16)

with λ a positive number to indicate the strength. Since
∑

i xi is constant (no blocks are lost),
the minimum entropy solution puts all blocks on one stack (if enough time is available). The
control problem is to find the distribution p that minimizes C in (3).

3.1 Numerical results

In the next section, we consider two particular problems. First, we are interested in finding
a sequence of actions that, starting in a given initial state x0, reach a given goal state xT ,
without state cost. Then we consider the case of entropy minimization, with no defined goal
state and nonzero state cost.

3.1.1 Goal state and λ = 0

Figure 4 shows a small example where the planning task is to shift a tower composed of four
blocks which initially is at position 1 to the final position 3.

Mach Learn

Fig. 3 Block stacking problem: Graphical model representation as a dynamic Bayesian network. Time runs
horizontal and stack positions vertical. At each time, the transition probability of xt to xt+1 is a mixture over
the variables kt , lt . The initial state is “clamped” to a given configuration by conditioning on the variables
x1. To force a goal state or final configuration, the final state xT can also be “clamped” (see Sect. 3.1.1)

To find the KL control we first condition the model both on the initial state and the final
state variables by “clamping” all variables x1 and xT . The KL control solution is obtained
by computing for t = 1, . . . , T the marginal p(kt , lt |xt−1). In this case, we can find the exact
solution via the junction tree (JT) algorithm (Lauritzen and Spiegelhalter 1988; Mooij 2010).
The kt , lt is obtained by taking the MAP state of p(kt , lt |xt−1) breaking ties at random,
which results in a new state xt .

These probabilities p(kt , lt |xt−1) are shown in Fig. 4b. Notice that the symmetry in the
problem is captured in the optimal control, which assigns equal probability when moving
the first block to left or right (Fig. 4b, c, t = 1). Figure 4d shows the strategy resulting from
the MAP estimate, which first unpacks the tower at position 1 leaving all four locations with
one block at t = 4, and then re-builds it again at the goal position 3.

For larger instances, the JT method is not feasible because of too large tree widths. For
instance, to stack 4 blocks on 6 locations within a horizon of 11, the junction tree has a
maximal width of 12, requiring about 15 Gbytes of memory. We can nevertheless obtain
approximate solutions using different approximate inference methods. In this work, we use
the belief propagation algorithm (BP) and a generalization known as the Cluster Variation
method (CVM). We briefly summarize the main idea of the CVM method in Appendix C. We
use the minimal cluster size, that is, the outer clusters are equal to the interaction potentials
ψ as shown in the graphical model Fig. 3.

To compute the sequence of actions we follow again a sequential approach. Figure 5
shows results using BP and CVM. For n = 4, BP converges fast and finds a correct plan
for all instances. For larger n, BP fails to converge, more or less independently of m. Thus,
BP can be applied successfully to small instances only. Conversely, CVM is able to find a
correct plan in all run instances, although at the cost of more CPU time, as Fig. 5 shows.

Mach Learn

Fig. 4 Control for the
KL-blocks-world problem with
end-cost: example with
m = 4, n = 4 and T = 8.
(a) Initial and goal states.
(b) Probability of action
p(kt , lt |xt−1) for each time step
t = 1, . . . , T . (c) Expected value
〈xt

i
〉, i = 1, . . . , n given the initial

position and desired final
position and (d) the MAP
solution for all times using a gray
scale coding with white coding
for zero and darker colors coding
for higher values

The variance in the CPU error bars is explained by the randomness in the number of actual
moves required to solve each instance, which is determined by the initial and goal states.

3.1.2 No goal state and λ > 0: entropy minimization

We now consider the problem without conditioning on xT and λ > 0. Although this may
seem counter intuitive, removing the end constraint in fact makes this problem harder, as the
number of states that have significant probability for large t is much larger. BP is not able
to produce any reliable result for this problem. We applied CVM to a large block stacking
problem with n = 8,m = 40, T = 80 and λ = 10. We use again the minimal cluster size and
the double loop method of Heskes et al. (2003). The results are shown in Fig. 6.

The computation time was approximately 1 hour per t iteration and memory use was
approximately 27 Mb. This instance was too large to obtain exact results. We conclude that,
although the CPU time is large, the CVM method is capable to yield an apparently accurate
control solution for this large instance.

4 Multi Agent cooperative game (KL-stag-hunt)

In this section we consider a variant of the stag hunt game, a prototype game of social
conflict between personal risk and mutual benefit (Skyrms 2004). The original two-player

Mach Learn

Fig. 5 Control for the KL-blocks-world problem with end-cost: results on approximate inference using ran-
dom initial and goal states. (Left) percent of instances where BP converges for all t = 1 : T as a function of
m for different values of n. (Right) CPU-time required for CVM to find a correct plan for different values of
n,m. T was set to 	m·n

4
. We run 50 instances for each pair (m,n)

Table 1 Two-player stag hunt payoff matrix example: rows and columns indicate actions of one and the
other player respectively. The payoff describes the reward for each hunter. For instance, if both go for the
stag, they both get a reward of 3. If one hunter goes for the stag and the other for the hare, they get a reward
of 0 and 1 respectively

Stag Hare

Stag 3,3 0,1

Hare 1,0 1,1

stag hunt game proceeds as follows: there are two hunters and each of them can choose
between hunting hare or hunting stag, without knowing in advance the choice of the other
hunter. The hunters can catch a hare on their own, giving them a small reward. The stag has
a much larger reward, but it requires both hunters to cooperate in catching it.

Table 1 displays a possible payoff matrix for a stag hunt game. It shows that both stag
hunting and hare hunting are Nash equilibria, that is, if the other player chooses stag, it is
best to choose stag (payoff equilibrium, top-left), and if the other player chooses hare, it
is best to choose hare (risk-dominant equilibrium, bottom-right). It is argued that these two
possible outcomes makes the game socially more interesting, than for example the prisoners
dilemma, which has only one Nash equilibrium. The stag hunt allows for the study of coop-
eration within social structures (Skyrms 1996) and for studying the collaborative behavior
of multi-agent systems (Yoshida et al. 2008).

We define the KL-stag-hunt game as a multi-agent version of the original stag hunt game
where M agents live in a grid of N locations and can move to adjacent locations on the
grid. The grid also contains H hares and S stags at certain fixed locations. Two agents can
cooperate and catch a stag together with a high payoff Rs . Catching a stag with more than
two agents is also possible, but it does not increase the payoff. The agents can also catch a
hare individually, obtaining a lower payoff Rh. The game is played for a finite time T and

Mach Learn

F
ig

.6
E

xa
m

pl
e

of
a

la
rg

e
bl

oc
k

st
ac

ki
ng

in
st

an
ce

w
ith

ou
te

nd
co

st
.n

=
8,

m
=

40
,
T

=
80

,
λ

=
10

us
in

g
C

V
M

Mach Learn

at each time-step all the agents perform an action. The optimal strategy is thus to coordinate
pairs of agents to go for different stags.

Formally, let xt
i = 1, . . . ,N, i = 1, . . . ,M, t = 1, . . . , T denote the position of agent i at

time t on the grid. Also, let sj = 1, . . . ,N, j = 1, . . . , S, and hk = 1, . . . ,N, k = 1, . . . ,H

denote the positions of the j th stag and the kth hare respectively. We define the following
state dependent reward as:

R(xt) = Rh

H∑

k=1

M∑

i=1

δxt
i
,hk

+ Rs

S∑

j=1

I

{(
M∑

i=1

xt
i = sj

)
> 1

}
,

where I{·} denotes the indicator function. The first term accounts for the agents located at
the position of a hare. The second one accounts for the rewards of the stags, which require
that at least two agents to be on the same location of the stag. Note that the reward for a stag
is not increased further if more than two agents go for the same stag. Conversely, the reward
corresponding to a hare is proportional to the number of agents at its position.

The uncontrolled dynamics factorizes among the agents. It allows an agent to stay on
the current position or move to an adjacent position (if possible) with equal probability,
thus performing a random walk on the grid. Consider the state variables of an agent in two
subsequent time-steps expressed in Cartesian coordinates, xt

i = 〈l,m〉, xt+1
i = 〈l′,m′〉. We

define the following function:

ψq

(〈l′,m′〉, 〈l,m〉) := I
{(

(l′ = l) ∧ (m′ = m)
)

∨ (
(l′ = l − 1) ∧ (m′ = m) ∧ (l > 0)

)

∨ (
(l′ = l) ∧ (m′ = m − 1) ∧ (m > 0)

)

∨
(
(l′ = l + 1) ∧ (m′ = m) ∧ (l <

√
N)

)

∨
(
(l′ = l) ∧ (m′ = m + 1) ∧ (m <

√
N)

)}
,

that evaluates to one if the agent does not move (first condition), or if it moves left, down,
right, up (subsequent conditions) inside the grid boundaries. The uncontrolled dynamics for
one agent can be written as conditional probabilities after proper normalization:

q
(
xt+1

i = 〈l′,m′〉|xt
i = 〈l,m〉) = ψq(〈l′,m′〉, 〈l,m〉)∑

a,b ψq(〈a, b〉, 〈l,m〉)
and the joint uncontrolled dynamics become:

q(xt+1|xt) =
M∏

i=1

q(xt+1
i |xt

i).

Since we are interested in the final configuration at end time T , we set the state dependent
path cost to zero for t = 1, . . . , T − 1 and to exp(− 1

λ
R(xT)) for the end time.

To minimize C in (3), exact inference in the joint space can be done by backward message
passing, using the following equations:

βt(xt) =
{

exp(− 1
λ
R(xt)) for t = T ,

∑
xt+1 q(xt+1|xt)β(xt+1) for t < T

(17)

Mach Learn

Fig. 7 (Color online) Exact inference KL-stag-hunt: Two hunters in a small grid. There are four hares at
each corner of the grid (small diamonds) and one stag in the middle (big diamond). Initial positions of the
hunters are denoted by small circles. One hunter is close to a hare and the other is at the same distance of
the stag and two hares. Final positions are denoted by asterisks. The optimal paths are drawn in blue and red.
(Left) For λ = 10, the optimal control is risk dominant, and hunters go for the hares. (Right) For λ = 0.1, the
payoff dominant control is optimal and hunters cooperate. N = 25, T = 4,Rs = −10 and Rh = −2

and the desired marginal probabilities can be obtained from the β-messages:

p(xt+1|xt) ∝ q(xt+1|xt)β(xt+1). (18)

To illustrate this game, we consider a small 5 × 5 grid with two hunters and apply (17)
and (18). There are four hares at each corner of the grid and one stag in the middle. The
initial positions of the hunters are selected in a way that one hunter is close to a hare and the
other is at the same distance of the stag and two hares. Starting from the initial fixed state
x1, we select the next state according to the most probable state from p(xt+1

i |xt
i) until the

end time. We break ties randomly. Figure 7 shows one resulting trajectory for two values
of λ.

For high values of λ (left plot), each hunter catches one of the hares. In this case, the cost
function is dominated by KL term. For small enough values of λ (right plot), both hunters
cooperate to catch the stag. In this case, the state cost, function R(xT), governs the optimal
control cost. Thus λ can be seen as a parameter that controls whether the optimal strategy is
risk dominant or payoff dominant.

Note that computing the exact solution using this procedure becomes infeasible even for
small number of agents, since the joint state space scales as NM . In the next section, we
show a more efficient representation using a factor graph for which approximate inference
is tractable.

4.1 Graphical model for the KL-stag-hunt game

The corresponding graphical model of the KL-stag-hunt game is depicted in Fig. 8 as a
factor graph. Since the uncontrolled dynamics factorizes over the agents, the joint state
can be split in different variable nodes. Note that since there is only state cost at the end
time, the graphical model becomes a tree. However, the factor node associated to the state
cost function ψR(xT) := exp(− 1

λ
R(xT)) involves all the agent states, which still makes the

problem intractable. Even approximate inference algorithms such as BP can not be applied,

Mach Learn

Fig. 8 Factor graph representation of the KL-stag-hunt problem. Circles denote variable nodes (states of the
agents at a given time-step) and squares denote factor nodes. There are two types of factor nodes: the ones
corresponding to the uncontrolled dynamics ψq and the one corresponding to the state cost ψR . Initial con-
figuration in gray denotes the states “clamped” to an initial given value. Despite being a tree, exact inference
and approximate inference are intractable in this model due to the complex factor ψR

Fig. 9 Decomposition of the
complex factor ψR into simple
factors involving at most three
variables of small cardinality.
Each state variable is linked to H

factors corresponding to the
hares locations. For each stag
there is a chain of factors
ψri , i = 1, . . . ,M − 1 which
evaluates to one for the allowed
configurations and to zero
otherwise. Factor ψrM weights
the configuration of having zero,
one or more agents being at the
stag position (figure shows the
case of one stag only)

since messages from ψR to one of the state variables xT
i would require a marginalization

involving a sum of (N − 1)M terms.
However, we can exploit the particular structure of that factor by decomposing it in

smaller factors defined on small sets of (at most three) auxiliary variables of small cardi-
nality. This transformation becomes intuitive once the graphical model representation for

Mach Learn

the problem is identified. The procedure defines indicator functions for the allowed config-
urations which are weighted according to the corresponding cost. Figure 9 illustrates the
procedure for the case of one stag.

1. First, we add H × M factors ψhk
(xT

i), defined for each hare location hk and each agent
variable xT

i . These factors account for the hare costs:

ψhk
(xT

i) :=
{

exp(− 1
λ
Rh) if (xT

i = hk),

1 otherwise.

2. Second, we add factors ψsj (x
T
i , di,j) for each stag j defined on each state variable xT

i and
new introduced binary variables di,j = 0,1. These factors evaluate to one when variable
di,j takes the value of a Kronecker δ of the agent’s state xT

i and the position of a stag sj ,
and zero otherwise:

ψsj (x
T
i , di,j) := I

{
(di,j = δxT

i
,sj

)
}
.

3. Third, for each stag, we introduce a chain of factors that involve the binary variables di,j

and additional variables ui,j = 0,1,2. The new variables ui,j encode whether the stag j

has zero, one, or more agents after considering the (i + 1)th agent. The new factors are:

ψr1(d1,j , d2,j , u1,j) := I
{(

(d1,j = 0) ∧ (d2,j = 0) ∧ (u1,j = 0)
)

∨ (
(d1,j = 1) ∧ (d2,j = 1) ∧ (u1,j = 2)

)

∨ (
(d1,j �= d2,j) ∧ (u1,j = 1)

)}
,

ψri−1(ui−1,j , di,j , ui,j) := I
{(

(di,j = 0) ∧ (ui−1,j = ui,j)
)

∨ (
(di,j = 1) ∧ (ui−1,j = 0) ∧ (ui,j = 1)

)

∨ (
(di,j = 1) ∧ (ui−1,j = 1) ∧ (ui,j = 2)

)

∨ (
(di,j = 1) ∧ (ui−1,j = 2) ∧ (ui,j = 2)

)}
.

4. Finally, we define factors ψrM that weight the allowed configurations:

ψrM (uM−1,j) :=
{

exp(− 1
λ
Rs) if (uM−1,j = 2),

1 otherwise.

The original factor can be rewritten marginalizing the auxiliary variables di,j , ui,j over the
product of the previous factors ψsj ,ψhk

,ψri :

exp

(
− 1

λ
R(xT)

)
= ψS(x

T)ψH (xT),

ψS(x
T) :=

S∏

j=1

[∑

d1,j ,d2,j
u1,j ,uM−1,j

(
ψsj (x

T
1 , d1,j)ψsj (x

T
2 , d2,j)

)
ψr1(d1,j , d2,j , u1,j)

Mach Learn

Fig. 10 Approximate inference KL-stag-hunt: Control obtained using BP for M = 10 hunters in a large
grid. See Fig. 7 for a description of the symbols. (Left) Risk dominant control is obtained for λ = 10, where
all hunters go for a hare. (Right) Payoff dominant control is obtained for λ = 0.1. In this case, all hunters
cooperate to capture the stags except the ones on the upper-right corner, who are too far away from the stag
to reach it in T = 10 steps. Their optimal choice is to go for a hare. N = 400, S = M/2,Rs = −10,H = 2M

and Rh = −2

× ψrM (uM−1,j)
∑

d3,j ,...,dM,j
u2,j ,...,uM,j

M∏

i=3

ψri−1(ui−1,j , di,j , ui,j)ψsj (x
T
i , di,j)

]
,

ψH (xT) :=
H∏

k=1

ψhk
(xT

i),

where for clarity of notation we have grouped the factors related to the stags and hares in
ψS(x

T) and ψH (xT), respectively.
The extended factor graph is tractable since it involves factors of no more than three

variables of small cardinality. Note that this transformation can also be applied if additional
state costs are incorporated at each time-step ψR(xt) �= 0, t = 1, . . . , T . However, such a
representation is not of practical interest, since it complicates the model unnecessarily.

Finally, note that the tree-width of the extended graph still grows fast with the number
of agents M because variables di,j and ui,j are coupled. Thus, exact inference using the JT
algorithm is still possible on small instances only.

4.2 Approximate inference of the KL-stag-hunt problem

In this section we analyze large systems for which exact inference is not possible using the
JT algorithm. The belief propagation (BP) algorithm is an alternative approximate algorithm
that we can run on the previously described extended factor graph.

We use the following setup: for a fixed number of agents M , we set the number of stags
H = 2M and the number of hares S = M

2 . Their locations, as well as the initial states x1

are chosen randomly and non-overlapping. We then construct a factor graph with initial
states “clamped” to x1 and build instance-dependent factors ψsj and ψhk

. We run BP using
sequential updates of the messages. If BP converges in less than 500 iterations, the optimal
trajectories of the agents are computed using the estimated marginals (factor beliefs) for
ψq(x

t+1|xt) after convergence. Starting from x1, we select the next state according to the

Mach Learn

Fig. 11 Approximate inference KL-stag-hunt: (Left) Change in the expected cost with respect to λ as a
function of λ for 〈M = 4,N = 100〉 and 〈M = 10,N = 225〉. The curve becomes sharper and its maximum
gets closer to λ = 1 for larger systems, suggesting a phase transition phenomenon between the risk dominant
and the payoff dominant regimes. (Right) Number of BP iterations required for convergence as a function of
λ. Results are averages over 20 runs with random initial states. Rs = −10,Rh = −2 and T = 10

most probable state from pBP (xt+1
i |xt

i) until the end time. We break ties randomly. We
analyze the system as a function of parameter λ for a several number of realizations.

The global observed behavior is qualitatively similar to the one of a small system: for
λ very large, a risk-dominant control is obtained and for λ small enough, payoff control
dominates. This is behavior is illustrated in Fig. 10, where an example for λ = 10 and λ =
0.1 are shown. We can thus conclude that BP provides an efficient and good approximation
for large systems where exact inference is not feasible.

To characterize the solutions, we compute the approximated expected cost as in (6), that
is − logZBP . We observe that for large systems that quantity changes abruptly at λ ≈ 1.
Qualitatively, the optimal control obtained on the boundary between risk-dominant and
payoff-dominant strategies differs maximally between individual instances and strongly de-
pends on the initial configuration. This suggests a phase transition phenomenon typical of
complex physical systems, in this case separating the two kind of optimal behaviors, where
λ plays the role of a “temperature” parameter.

Figure 11 shows this effect. The left plot shows the derivative of the expected approxi-
mated cost averaged over 20 instances. The curve becomes sharper and its maximum gets
closer to λ = 1 for larger systems. Error bars of the number of iterations required for conver-
gence is shown on the right. The number of BP iterations quickly increases as we decrease
λ, indicating that the solution for which agents cooperate is more complex to obtain. For λ

very small, BP may fail to converge after 500 iterations.

5 Related work

The idea to treat a control problem as an inference problem has a long history. The best
known example is the linear quadratic control problem, which is mathematically equivalent
to an inference problem and can be solved as a Kalman smoothing problem (Stengel 1994).
The key insight is that the value function that is iterated in the Bellman equation becomes
the (log of the) backward message in the Kalman filter. The exponential relation was gener-
alized in Kappen (2005) for the non-linear continuous space and time (Gaussian case) and
in Todorov (2007) for a class of discrete problems.

Mach Learn

There is a line of research on how to compute optimal action sequences in influence
diagrams using the idea of probabilistic inference (Cooper 1988; Tatman and Shachter 1990;
Shachter and Peot 1992). Although this technique can be implemented efficiently using the
junction tree approach for single decisions, the approach does not generalize in an efficient
way to optimal decisions, in the expected-reward sense, in multi-step tasks. The reason is
that the order in which one marginalizes and optimizes strongly affects the efficiency of the
computation. For a Markov decision process (MDP) there is an efficient solution in terms
of the Bellman equation.1 For a general influence diagram, the marginalization approach
as proposed in Cooper (1988), Tatman and Shachter (1990), Shachter and Peot (1992) will
result in an intractable optimization problem over u0:T −1 that cannot be solved efficiently
(using dynamic programming), unless the influence diagram has an MDP structure.

The KL control theory shares similarities with work in reinforcement learning for pol-
icy updating. The notion of KL divergence appears naturally in the work of Bagnell and
Schneider (2003) who proposes an information geometric approach to compute the natural
policy gradient (for small step sizes). This idea is further developed into an Expectation-
Maximization (EM) type algorithm (Dayan and Hinton 1997) in recent work (Peters et al.
2010; Kober and Peters 2011) using a relative entropy term. The KL divergence acts here as
a regularization that weights the relative dependence of the new policy on the data observed
and the old policy, respectively.

It is interesting to compare the notion of free energy in continuous-time dynamical sys-
tems with Gaussian noise considered in Friston et al. (2009) with the path integral formalism
of Kappen (2005), which is a special case of KL control theory. Friston et al. (2009) advocate
the optimization of free energy as a guiding principle to describe behavior of agents. The
main difference between the KL control theory and Friston’s free energy principle is that in
KL control theory, the KL divergence plays the role of an expected future cost and its opti-
mization yields a (time dependent) optimal control trajectory, whereas Friston’s free energy
computes a control that yields a time-independent equilibrium distribution, corresponding
to the minimal free energy. Friston’s free energy formulation is obtained as a special case
of KL control theory when the dynamics and the reward/cost is time-independent and the
horizon time is infinite.

The KL control approach proposed in this paper also bears some relation to the EM ap-
proach of Toussaint and Storkey (2006), who consider the discounted reward case with 0, 1
rewards. The posterior can be considered a mixture over times at which rewards are incor-
porated. For an homogeneous Markov process and time independent costs, the backward
message passing can be effectively done in a single chain and not the full mixture distribu-
tion needs to be considered. We can compare the EM approach of Toussaint and Storkey
(2006) (TS) and the KL control approach (KL):

– The TS approach is more general than the KL approach, in the sense that the reward
considered in TS is an arbitrary function of state and action R(x,u), whereas the reward
considered in KL is a sum of a state dependent term R(x) and a KL divergence.

– The KL approach is significantly more efficient than the TS approach. In the TS approach,
the backward messages are computed for a fixed policy π (E-step), from which an im-
proved policy is computed (M-step). This procedure is iterated until convergence. In the
KL approach, the backward messages give the optimal control directly, with no further
need for iteration.

1Here we mean by efficient, that the sum or min over a sequence of states or actions can be performed as a
sequence of sums or mins over states.

Mach Learn

– In addition, the KL approach is more efficient than the TS approach for time-dependent
problems. Using the TS approach for time-dependent problems makes the computation
a factor T more time-consuming than for the time-independent case, since all mixture
components must be computed. The complexity of the KL control approach does not
depend on whether the problem is time-dependent or not.

– The TS and KL approach optimize with respect to a different quantity. The TS approach
writes the state transition p(y|x) = ∑

u p(y|x,u)π(u|x) and optimizes with respect to
π . The KL approach optimizes the state transition probability p(y|x) directly either as a
table or in a parametrized way.

6 Discussion

In this paper, we have shown the equivalence of a class of stochastic optimal control prob-
lems to a graphical model inference problem. As a result, exact or approximate inference
methods can directly be applied to the intractable stochastic control computation. The class
of KL control problems contains interesting special cases such as the continuous non-linear
Gaussian stochastic control problems introduced in Kappen (2005), discrete planning tasks
and multi-agent games, as illustrated in this paper.

We notice, that there exist many stochastic control problems that are outside of this
class. In the basic formulation of (1), one can construct control problems where the func-
tional form of the controlled dynamics pt(xt+1|xt , ut) is given as well as the cost of control
R(xt , ut , xt+1, t). In general, there may then not exist a qt (xt+1|xt) such that (2) holds.

In this paper, we have considered the model based case only. The extension to the model
free case would require a sampling based procedure. See Bierkens and Kappen (2012) for
initial work in this direction.

We have demonstrated the effectiveness of approximate inference methods to compute
the approximate control in a block stacking task and a multi-agent cooperative task.

For the KL-blocks-world, we have shown that an entropy minimization task is more chal-
lenging than stacking blocks at a fixed location (goal state), because the control computation
needs to find out where the optimal location is. Standard BP does not give any useful results
if no goal state was specified, but apparently good optimal control solutions were obtained
using generalized belief propagation (CVM). We found that the marginal computation us-
ing CVM is quite difficult compared to other problems that have been studied in the past
(Albers et al. 2007), in the sense that relatively many inner loop iterations were required for
convergence. One can improve the CVM accuracy, if needed, by considering larger clusters
(Yedidia et al. 2005) as has been demonstrated in other contexts (Albers et al. 2006), at the
cost of more computational complexity.

We have given evidence that the KL control formulation is particularly attractive for
multi-agent problems, where q naturally factorizes over agents and where interaction results
from the fact that the reward depends on the state of more than one agent. A first step in this
direction was already made in Wiegerinck et al. (2006), van den Broek et al. (2008a). In
this case, we have considered the KL-stag-hunt game and shown that BP provides a good
approximation and allows to analyze the behavior of large systems, where exact inference is
not feasible.

We found that, if the game setting strongly penalizes large deviations from the baseline
(random) policy, the coordinated solution is sub-optimal. That means that the optimal solu-
tion distributes the agents among the different hares rather than bringing them jointly to the
stags (risk-dominant regime). On the contrary, if the agents are not constrained by deviat-
ing too much from the baseline policy to maximize 〈R〉, the coordinated solution becomes

Mach Learn

optimal (payoff dominant regime). We believe that this is an interesting result, since it pro-
vides a explanation of the emergence of cooperation in terms of an effective temperature
parameter λ.

Acknowledgements We would like to thank anonymous reviewers for helping on improving the
manuscript, Kees Albers for making available his sparse CVM code, Joris Mooij for making available the
libDAI software and Stijn Tonk for useful discussions. The work was supported in part by the ICIS/BSIK
consortium.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix A: Boltzmann distribution

Consider the KL divergence between a normalized probability distribution p(x) and some
positive function ψ(x):

C(p) =
∑

x

p(x) log
p(x)

ψ(x)

C is a function of the distribution p. We compute the distribution that minimizes C with
respect to p subject to normalization

∑
x p(x) = 1 by adding a Lagrange multiplier:

L(p) = C(p) + β

(
∑

x

p(x) − 1

)
,

dL

dp(x)
= log

p(x)

ψ(x)
+ 1 + β.

Setting the derivative equal to zero yields p(x) = ψ(x) exp(−β − 1) = ψ(x)/Z, where
we have defined Z = exp(β + 1). The normalization condition

∑
x p(x) = 1 fixes Z =∑

x ψ(x). Substituting the solution for p in the cost C yields C = − logZ.

Appendix B: Relation to continuous path integral model

We write p(x ′|x) = N (x ′|x + f (x, t)dt + g(x, t)u(x, t)dt,Ξdt) with Ξ(x, t) =
g(x, t)νg(x, t)T in (9) as

p(x ′|x) = N (x ′|x + f (x, t)dt,Ξ(x, t)dt) exp
(
(ẋ − f (x, t))T Ξ−1g(x, t)u(x, t)

− dt

2
(g(x, t)u(x, t))T Ξ−1g(x, t)u(x, t)

)

= q(x ′|x) exp
(
U(x,x ′, t)dt

)
,

U(x, x ′, t) = (ẋ − f (x, t))T Ξ−1g(x, t)u(x, t) − 1

2
(g(x, t)u(x, t))T Ξ−1g(x, t)u(x, t)

with ẋ = (x ′ − x)/dt .

Mach Learn

In order to make the link to (3) we compute

∑

x′
p(x ′|x) log

p(x ′|x)

q(x ′|x)
=

∑

x′
p(x ′|x)U(x, x ′, t)dt

= dt

2
(g(x, t)u(x, t))T Ξ(x, t)−1g(x, t)u(x, t)

= dt

2
u(x, t)T ν−1u(x, t),

where we have made use of the fact that
∑

x′ p(x ′|x)x ′ = x + f (x, t)dt + g(x, t)u(x, t)dt

and gT Ξ−1g = gT (g−1)T ν−1g−1g = ν−1.2 Therefore,

KL(p||q) =
∑

xdt :T
p(xdt :T |x0) log

p(xdt :T |x0)

q(xdt :T |x0)

=
T −dt∑

s=0

∑

xs

p(xs |x0)
∑

xs+dt

p(xs+dt |xs)U(xs, xs+dt , s)dt

=
T −dt∑

s=0

dt
∑

xs

p(xs |x0)
1

2
(u(xs, s))T ν−1u(xs, s).

In the limit of dt → 0 the KL divergence between p and q becomes

KL(p||q) =
〈∫ T

0
dt

1

2
u(x(s), s)T ν−1u(x(s), s)

〉

in agreement with (10).

Appendix C: Cluster variation method

In this appendix, we give a brief summary of the CVM method and the double loop ap-
proach. For a more complete description see Yedidia et al. (2001), Kappen and Wiegerinck
(2002), Heskes et al. (2003).

The cluster variation method replaces the probability distribution p(x) in the minimiza-
tion equation (3) by a large number of (overlapping) probability distributions (clusters), each
describing the interaction between a small number of variables.

p(x) ≈ {pα(xα),α = 1, . . .}
with each α a subset of the indices 1, . . . , n, xα the corresponding subset of variables and
pα the probability distribution on xα . The set of clusters is denoted by B , and must be such
that any interaction term ψα(xα), with ψ(x) = ∏

α ψα(xα) from (4), is contained in at least
one cluster. One denotes the set of all pairwise intersections of clusters in B , as well as
intersections of intersections by M . Figure 12 (left) gives an example of a small directed
graphical model, where B consists of 4 clusters and M consists of 5 sub-clusters, Fig. 12
(middle).

2When g is not a square matrix (when the number of controls is less than the dimension of x), g−1 denotes

the pseudo-inverse of g. For any u, the pseudo-inverse has the property that g−1gu = u.

Mach Learn

Fig. 12 (Color online) (Left) Example of a small network and a choice of clusters for CVM. (Middle) Inter-
sections of clusters recursively define a set of sub-clusters. (Right) Fcvm is non-convex (blue curve) and is
bounded by a convex function F̃x0

The CVM approximates the KL divergence, (3), as

C(x0,p) ≈ Fcvm({pα}),

Fcvm({pα}) =
∑

α∈B

∑

xα

pα(xα) log
pα(xα)

ψα(xα)
+

∑

β∈M

aβ

∑

xβ

pβ(xβ) logpβ(xβ).

Fcvm is minimized with respect to all {pα} subject to normalization and consistency con-
straints:

∑

xα

pα(xα) = 1, pα(xβ) = pβ(xβ), β ⊂ α, pα(xα) ≥ 0.

The numbers aβ are called the Möbius or overcounting numbers. They can be recursively
computed from the formula

1 =
∑

α∈B∪M,α⊃β

aα, ∀β ∈ B ∪ M.

Since aα can be both positive and negative, Fcvm is not convex. A guaranteed convergent
approach to minimize Fcvm is a double loop approach where the outer loop is to upper-
bound Fcvm by a convex function F̃p0 that touches at the current cluster solution p0 = {p0

α}.
Optimizing F̃p0(p) is a convex problem that can be solved using the dual approach (inner
loop) and is guaranteed to decrease Fcvm to a local minimum. The solution p∗(p0) of this
convex sub-problem is guaranteed to decrease Fcvm:

Fcvm(p0) = F̃p0(p0) ≥ F̃p0(p∗(p0)) ≥ Fcvm(p∗(p0)).

Based on p∗(p0) a new convex upper bound is computed (outer loop). This is called a double
loop method. The approach is illustrated in Fig. 12 (right).

Alternatively, one can choose to ignore the non-convexity issue. Adding Lagrange multi-
pliers λ to enforce the constraints one can minimize with respect to p = {pα} and obtain an
explicit solution of p in terms of the interactions ψ and the λ’s. Inserting this solution in the
above constraints results in a set of non-linear equations for the λ’s, which one may attempt
to solve by fixed point iteration. It can be shown that these equations are equivalent to the
message passing equations of belief propagation. Unlike the above double loop approach,

Mach Learn

belief propagation does not converge in general, but tends to give a fast and accurate solution
for those problems for which it does converge.

References

Albers, C. A., Heskes, T., & Kappen, H. J. (2007). Haplotype inference in general pedigrees using the cluster
variation method. Genetics, 177(2), 1101–1118.

Albers, C. A., Leisink, M. A. R., & Kappen, H. J. (2006). The cluster variation method for efficient linkage
analysis on extended pedigrees. BMC Bioinformatics, 7(S-1).

Bagnell, J. A., & Schneider, J. (2003). Covariant policy search. In IJCAI’03: Proceedings of the 18th interna-
tional joint conference on artificial intelligence (pp. 1019–1024). San Francisco: Morgan Kaufmann.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Belmont: Athena Scientific.
Bierkens, J., & Kappen, B. (2012). Kl-learning: Online solution of Kullback-Leibler control problems.

http://arxiv.org/abs/1112.1996.
Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting structure in policy construction. In IJCAI’95:

Proceedings of the 14th international joint conference on artificial intelligence (pp. 1104–1111). San
Francisco: Morgan Kaufmann.

Cooper, G. (1988). A method for using belief networks as influence diagrams. In Proceedings of the workshop
on uncertainty in artificial intelligence (UAI’88) (pp. 55–63).

da Silva, M., Durand, F., & Popović, J. (2009). Linear Bellman combination for control of character anima-
tion. ACM Transactions on Graphics, 28(3), 82:1–82:10.

Dayan, P., & Hinton, G. E. (1997). Using expectation-maximization for reinforcement learning. Neural Com-
putation, 9(2), 271–278.

Friston, K. J., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning or active inference? PLoS ONE,
4(7), e6421.

Heskes, T., Albers, K., & Kappen, H. J. (2003). Approximate inference and constrained optimization. In
Proceedings of the 19th conference on uncertainty in artificial intelligence (UAI’03), Acapulco, Mexico,
(pp. 313–320). San Francisco: Morgan Kaufmann.

Jordan, M. I. (Ed.) (1999). Learning in graphical models. Cambridge: MIT Press.
Kappen, H. J. (2005). Linear theory for control of nonlinear stochastic systems. Physical Review Letters,

95(20), 200201.
Kappen, H. J., & Wiegerinck, W. (2002). Novel iteration schemes for the cluster variation method. In Ad-

vances in neural information processing systems (Vol. 14, pp. 415–422). Cambridge: MIT Press.
Kober, J., & Peters, J. (2011). Policy search for motor primitives in robotics. Machine Learning, 84(1–2),

171–203.
Koller, D., & Parr, R. (1999). Computing factored value functions for policies in structured mdps. In IJCAI

’99: Proceedings of the 16th international joint conference on artificial intelligence (pp. 1332–1339).
San Francisco: Morgan Kaufmann.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures
and their application to expert systems. Journal of the Royal Statistical Society. Series B. Methodologi-
cal, 50(2), 154–227.

Mooij, J. M. (2010). libDAI: A free and open source C++ library for discrete approximate inference in
graphical models. Journal of Machine Learning Research, 11, 2169–2173.

Murphy, K., Weiss, Y., & Jordan, M. (1999). Loopy belief propagation for approximate inference: An empir-
ical study. In Proceedings of the 15th conference on uncertainty in artificial intelligence (UAI’99) (pp.
467–475). San Francisco: Morgan Kaufmann.

Peters, J., Mülling, K., & Altün, Y. (2010). Relative entropy policy search. In Proceedings of the 24th AAAI
conference on artificial intelligence (AAAI 2010) (pp. 1607–1612). Menlo Park: AAAI Press.

Russell, S. J., Norvig, P., Candy, J. F., Malik, J. M., & Edwards, D. D. (1996). Artificial intelligence: a modern
approach. Upper Saddle River: Prentice-Hall, Inc.

Shachter, R. D., & Peot, M. A. (1992). Decision making using probabilistic inference methods. In Pro-
ceedings of the 8th conference on uncertainty in artificial intelligence (UAI’92) (pp. 276–283). San
Francisco: Morgan Kaufmann.

Skyrms, B. (1996). Evolution of the social contract. Cambridge: Cambridge University Press.
Skyrms, B. (Ed.) (2004). The stag hunt and evolution of social structure. Cambridge: Cambridge University

Press.
Stengel, R. F. (1994). Optimal control and estimation. New York: Dover Publications, Inc.
Tatman, J., & Shachter, R. (1990). Dynamic programming and influence diagrams. IEEE Transactions on

Systems, Man, and Cybernetics, 20(2), 365–379.

http://arxiv.org/abs/1112.1996

Mach Learn

Theodorou, E. A., Buchli, J., & Schaal, S. (2009). Path integral-based stochastic optimal control for rigid
body dynamics. In Adaptive dynamic programming and reinforcement learning, 2009. ADPRL ’09.
IEEE symposium on (pp. 219–225).

Theodorou, E. A., Buchli, J., & Schaal, S. (2010a). Learning policy improvements with path integrals. In
International conference on artificial intelligence and statistics (AISTATS 2010).

Theodorou, E. A., Buchli, J., & Schaal, S. (2010b). Reinforcement learning of motor skills in high dimen-
sions: A path integral approach. In Proceedings of the international conference on robotics and automa-
tion (ICRA 2010) (pp. 2397–2403). New York: IEEE Press.

Todorov, E. (2007). Linearly-solvable Markov decision problems. In Advances in neural information pro-
cessing systems (Vol. 19, pp. 1369–1376). Cambridge: MIT Press.

Todorov, E. (2008). General duality between optimal control and estimation. In 47th IEEE conference on
decision and control (pp. 4286–4292).

Todorov, E. (2009). Efficient computation of optimal actions. Proceedings of the National Academy of Sci-
ences of the United States of America, 106(28), 11478–11483.

Toussaint, M., & Storkey, A. (2006). Probabilistic inference for solving discrete and continuous state Markov
decision processes. In ICML ’06: Proceedings of the 23rd international conference on machine learning
(pp. 945–952). New York: ACM.

van den Broek, B., Wiegerinck, W., & Kappen, H. J. (2008a). Graphical model inference in optimal control
of stochastic multi-agent systems. Journal of Artificial Intelligence Research, 32(1), 95–122.

van den Broek, B., Wiegerinck, W., & Kappen, H. J. (2008b). Optimal control in large stochastic multi-agent
systems. Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning, 4865,
15–26.

Wiegerinck, W., van den Broek, B., & Kappen, H. J. (2006). Stochastic optimal control in continuous space-
time multi-agent systems. In Proceedings of the 22nd conference on uncertainty in artificial intelligence
(UAI’06), Arlington, Virginia (pp. 528–535). Corvallis: AUAI Press.

Wiegerinck, W., van den Broek, B., & Kappen, H. J. (2007). Optimal on-line scheduling in stochastic multi-
agent systems in continuous space and time. In Proceedings of the 6th international joint conference on
autonomous agents and multiagent systems AAMAS 07 (pp. 749–756).

Yedidia, J., Freeman, W., & Weiss, Y. (2001). Generalized belief propagation. In T. K. Leen, T. G. Dieterich, &
V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13, pp. 689–995). Cambridge:
MIT Press.

Yedidia, J., Freeman, W., & Weiss, Y. (2005). Constructing free-energy approximations and generalized belief
propagation algorithms. IEEE Transactions on Information Theory, 51(7), 2282–2312.

Yoshida, W., Dolan, R. J., & Friston, K. J. (2008). Game theory of mind. PLoS Computational Biology, 4(12),
e1000254.

	Optimal control as a graphical model inference problem
	Abstract
	Introduction
	Control as KL minimization
	Graphical model inference

	Stacking blocks (KL-blocks-world)
	Numerical results
	Goal state and lambda= 0
	No goal state and lambda>0: entropy minimization

	Multi Agent cooperative game (KL-stag-hunt)
	Graphical model for the KL-stag-hunt game
	Approximate inference of the KL-stag-hunt problem

	Related work
	Discussion
	Acknowledgements
	Open Access
	Appendix A: Boltzmann distribution
	Appendix B: Relation to continuous path integral model
	Appendix C: Cluster variation method
	References

