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Abstract

We apply generalized belief propagation to
approximate inference in hybrid Bayesian
networks. In essence, in the algorithms de-
veloped for discrete networks we only have
to change “strong marginalization” (exact)
into “weak marginalization” (same moments)
or, equivalently, the “sum” operation in the
(generalized) sum-product algorithm into a
“collapse” operation. We describe both
a message-free single-loop algorithm based
on fixed-point iteration and a more tedious
double-loop algorithm guaranteed to con-
verge to a minimum of the Kikuchi free en-
ergy. With the cluster variation method we
can interpolate between the minimal Kikuchi
approximation and the (strong) junction tree
algorithm. Simulations on the emission net-
work of [7], extended in [13], indicate that
the Kikuchi approximation in practice often
works really well, even in the difficult case of
discrete children of continuous parents.

1 INTRODUCTION

Bayesian networks provide a natural framework for
describing multivariate probability distributions and
reasoning with uncertainty. The usual application is
for domains with only discrete variables, but recently
there has been growing interest in hybrid domains with
both discrete and continuous variables [13, 16, 9]. Typ-
ical applications are in target tracking [1] and fault di-
agnosis [12]. Exact inference in hybrid Bayesian net-
works is even more complicated than in “standard”
Bayesian networks with only discrete variables: exact
inference in hybrid networks with a simple chain-like
structure is NP-hard [11].

In discrete networks, exact inference is tractable in
singly-connected structures. A popular algorithm is

Pearl’s belief propagation [18]. When “naively” ap-
plied in structures containing cycles, loopy belief prop-
agation often leads to surprisingly accurate perfor-
mance [17]. The notion that fixed points of loopy be-
lief propagation correspond to extrema of the Bethe
free energy [22] has been an important step in the
theoretical understanding of this success. The cluster
variation method [22, 24] leads to an inference algo-
rithm referred to as “generalized belief propagation”
and makes it possible to interpolate between standard
belief propagation and exact inference as in the junc-
tion tree algorithm [10].

In this article, we will investigate whether it is possible
to apply these ideas to approximate inference in hybrid
Bayesian networks. The example that will guide us is
the emission network from [7], displayed in Figure 1.
First we will in Section 2 review (generalized) belief
propagation in networks with discrete variables. We
will present generalized belief propagation in message-
free notation as a variational method that tries to min-
imize the Kikuchi free energy. Furthermore, we will de-
scribe a double-loop algorithm guaranteed to converge
to such a minimum, similar to (but arguably simpler
than) the CCCP algorithm of [24]. In Section 3 we will
then consider the changes needed for approximate in-
ference in hybrid networks, which happen to be really
few. We will illustrate the performance of the resulting
algorithm on the emission network in Section 4. In the
network of Figure 1 all discrete variables are parents of
continuous children. The more general case, including
discrete children of continuous parents, is (even) more
complicated [15]. Here we follow up on [13] to show
that the same algorithm can be used here as well.

2 LOOPY BELIEF PROPAGATION

2.1 KIKUCHI FREE ENERGY

In this section we will review (generalized) belief prop-
agation in networks with discrete variables and present
it as a variational method that tries to minimize the



Kikuchi free energy. We will use the emission network
in Figure 1 for illustration, for the moment acting as
if all variables are discrete.

We will use the language of factor graphs [6]. We as-
sume that the distribution over latent variables X can
be written in the factorized form

X) =[] %a(Xa), 1)

with a numbering the factors or potentials ¥, and Z
an overall normalization constant. In a Bayesian net-
work, the factors consist of each child and its parents
(i.e., the cliques in the moralized graph). Without
evidence, the normalization constant Z equals 1. Evi-
dence, both hard and soft, can be incorporated in the
definition of the potentials [16]. With X denoting all
latent variables and Y the observed ones, P(X|Y) can
be written in the form (1) with Z = P(Y") the normal-
ization constant.

The probability P(X) in

F exact (

(1) is the solution of

Pexact(X) = argmin F(P) ,

P
with the free energy
P(X) ]
= PX)log | =———| ,
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and where the minimization is under the constraint
that P is a probability, i.e., nonnegative and normal-
ized to 1. In the following these constraints on prob-
ability distributions are always implicitly assumed. In
the traditional “mean-field” variational methods for
approximate inference in graphical models (see e.g. the
introduction in [5]), the approach is to restrict P(X) to
a tractable distribution. By construction the approx-
imate mean-field free energy F'(P) is an upper bound
of the exact free energy F'(Pexact): F(P) > F(Pexact)-

To arrive at (generalized) belief propagation, we con-
fine our search to “tree-like probability distributions”

ILP.(Xa) _
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with cg overcounting or Moebius numbers. Here P(X)
is some function, not necessarily normalizable. We will
refer to x5 as variable subsets and write them in lower
case to distinguish them from the “outer clusters” X,.
Typically, the variable subsets zz are intersections of
the outer clusters X,. We write 8 C « to indicate that
zg is a subset of X,. The overcounting numbers follow
from the recursive Moebius formulacg =1-3_ 5 ca,
with ¢, = 1 for all outer clusters. The intuition is that,
after canceling terms in the numerator and denomina-
tor, we should end up with a single term zg in the

Pexact (X) ~

numerator. The overcounting numbers cg of the vari-
able subsets are usually negative, i.e., terms Pg(zg)
appear in the denominator of (2). P,(X,) and Ps(zg)
are interpreted as (approximate) local marginals that
should normalize to 1, but should also be consistent:

VgVasp Palzp) = Ps(zp) . (3)
For singly-connected structures, it can be shown
that the exact solution Pexact(X) is of the form (2),
with proportionality constant equal to 1 and where
Po(Xa) = Pexact(Xo) and Pﬂ(mﬁ) = exact(Xﬂ)- In
structures containing cycles this need not be the case,
but we can still assume it to be true approximately.
Substituting (2) into the free energy and implement-
ing the above assumptions (Pexact(Xa) = Pa(Xa),
Pexact(rs) = Pg(xzg), and proportionally constant
equal to 1), we obtain the Kikuchi free energy

_ Po(Xo)
= ;XZQPQ(Xa)log [‘I'a(Xa)]

+Y cs Y Ps(zs)log Pa(zp) . (4)

B zg

Here P is now represented by the set of local marginals
P,(X,) and Pg(zg). Unlike the mean-field free energy,
the Kikuchi free energy is “just” an approximation and
not a bound of the exact free energy. Another im-
portant difference is that the mean-field methods fit a
global probability distribution that is globally and lo-
cally consistent by construction, where here we do not
care about global consistency and enforce local consis-
tency through the constraints. The hope is that the
Kikuchi free energy, which takes into account more of
the original structure of the network, is a better ap-
proximation of the exact free energy and thus yields
more accurate local marginals.

The tree-like approximation (2) corresponding to the
example of Figure 1 is, in obvious notation,

- P(1,4)P(1,2,5)P(1,3,5,7) P(
P = P()P(15)P(3)P

3,6)P(4,7,8)P(7,9)
(4)P(7)? '
(5)

The factors in the numerator correspond to the poten-
tials. The variable subsets in the denominator follow
from the intersections between the outer clusters (see
Figure 1(c)!). The overcounting numbers ensure that
the numerator and denominator are balanced.

With the cluster variation method, we can choose the
outer clusters larger than the subsets of variables as

!This graphical visualization is similar to the “region
graphs” in [23] that are used to compute the overcount-
ing numbers. Here we focus on the communication lines
between outer clusters and variable subsets.
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(d) A weak junction tree.

Figure 1: The emission network.

defined by the potentials. So, for example, instead of
the six outer clusters (5), we can take five clusters:

B)P(79)
(6)

This choice of outer clusters in fact corresponds to
a particular weak junction tree, visualized in Fig-
ure 1(d). The restriction in the cluster variation
method is that each of the potential subsets should
be fully contained in at least one of the outer clusters.
If we just redefine the potentials, e.g., through

Xo) =[] ¥ (X

yCa

- _ P(1,25)P(1,3,4,5,7)P(3,6) P(4,7
PX) = PL5) PPN P(7)

with n, the number of outer clusters that contain X,
we are back to our original definition (1). Alterna-
tively, we can assign each potential subset to a single
outer cluster, as in the junction tree algorithm.

If we choose the outer clusters such that they corre-
spond to the cliques of a junction tree, the Kikuchi free
energy is no longer an approximation but exact. With
the cluster variation method, we can so interpolate
between the minimal approximation (outer clusters as
defined by the potentials) and the exact solution. Ob-
viously, the price one has to pay is in the computa-
tional complexity that grows with the size of the outer
clusters. In the case of non-overlapping subsets, the
Kikuchi free energy reduces to the Bethe free energy.

2.2 GENERALIZED BELIEF
PROPAGATION

In [22] it is shown that fixed points of loopy belief
propagation correspond to extrema of the Bethe free
energy. Even better, both empirical and theoretical

results [3] show that stable fixed points of loopy be-
lief propagation must correspond to (local) minima
of the Bethe free energy. Both results were derived
for the case of non-overlapping subsets zg. Here we
consider the slightly more general case of overlapping
subsets. Rather than writing belief propagation as a
sum-product rule on factor graphs [6], we describe here
the message-free interpretation (see e.g. [20]), which is
closer in spirit to the junction tree algorithm. We start
by initializing all factor and variable beliefs

Py(Xy) x ¥o(Xs) and Pg(zg) x 1. )

Our approximation (2) equals, up to irrelevant nor-
malization, the exact distribution (1), but the factor
and variable beliefs are obviously incorrect. As in the
junction tree algorithm, we are now going to change
the factor and variable beliefs to make them approxi-
mate the exact marginals as closely as possible. We do
this under the constraint that the approximation (2)
stays the same.

Given a new estimate of the variable belief P3*V(zs),
we want to update the factor belief P, (X,) such that

Py (zg) = Py (zp). This leads to
an“m )
new B B
P (Xa) o Pa(Xa)ipa(%) (8)

Now suppose that we update all factors a with a D
at once (other schedules are possible as well and can
be treated similarly; see footnote 2 for the connec-
tion with the junction tree algorithm). The update in
the variable belief Pz(zg) follows from the constraint
Prev(X) o« P(X) and thus, when only 8 and a D f

are updated,
Il Paev(Xa) ] Pa(X

adf adp
Py (zg)~® — Pplwg)cs




Algorithm 1 Message-free GBP.

1: initialize Py (X,) = ¥,(X,) and Pg(zg) =1
2: repeat

3: for all variable subsets 8 do

4 update Pg(zg) + Py (zg) from (9)

5: for all neighboring factors a D 8 do

6 update P, (X4) ¢ P2V (X,) from (8)
7 end for

8 end for

9: until convergence

10: return P,(X,) and Pg(zp)

Substitution of (8) and a little rewriting yields

_°B _"8
P3*"(zp) oc Ps(z) "7 Py(zg) ™% (9)

with
1
ng

H Pa(wﬁ) (10)

adf3

the logarithmic average of all P, (xg). The final algo-
rithm is summarized in Algorithm 1. Although in prin-
ciple normalization can be delayed until the (unnor-
malized) beliefs have converged, for numerical stability
it helps to normalize the beliefs once in a while. More
importantly, the full update (8) is often too greedy and
one has to resort to the damped version

P5(w5)]

) (%) [ )

with 0 < € < 1 an appropriate step size.

With straightforward manipulations, it can be shown
that fixed points of Algorithm 1 correspond to extrema
of the Kikuchi free energy under the constraints (3).
The proof introduces Lagrange multipliers for each of
the constraints, constructs the Lagrangian, takes the
derivatives w.r.t. P,(X,) and Ps(zg) and sets them
to zero, yielding

log o (Xa) —log Py (X)) + Z Aap(zp) = constant
BCa

cglog Pg(X3) + Z Aap(xg) = constant
adpf

Taking in the first line a sum over all factors a and
in the second line over all variable subsets 3, we can
get rid of the Lagrange multipliers and find that at an
extremum of the Kikuchi free energy the factor and
variable beliefs should satisfy

I1, Pa(
HBP,B z3) cﬁ

H T, (12)

which is how we initialize in (7). Furthermore, since we
derived the update of the variable beliefs in (9) such
that P(X) remains invariant, the equality (12) also
holds after convergence. At convergence, i.e., when
P2V x P, in (8), the constraints (3) are satisfied.

In Algorithm 1, we have taken the convention that
we update the factor beliefs of all outer clusters «
that subsume a particular variable subset . The
equivalent statement is that we take into account and
introduce Lagrange multipliers for all possible con-
straints between variable subsets 8 and neighboring
factors @« D B. This, however, is not always neces-
sary. Consider for example the distribution in (5).
The above convention implies that we “send messages”
(update factors based on variable beliefs) between vari-
able subset 1 and all its neighboring outer clusters,
ie, (1,4), (1,2,5), and (1,3,5,7). However, sending
messages between 1 and (1, 3,5,7) is unnecessary: the
constraint P(; 35 7)(1) = Pi(1) is already implied by
the constraint P(; 357)(1,5) = Pa,2,5(1,5). In the
construction of the Lagrangian we can leave out the
constraint and corresponding Lagrange multiplier. An
alternative interpretation is that we redefine the no-
tion of “neighbors” and no longer refer to (1,3,5,7) as
a neighboring outer cluster of variable subset 1. This
then brings us closer to the standard junction tree al-
gorithm?. Unnecessary links are in Figure 1(c) and
(d) indicated by the dashed lines. Another option,
as described in [22], is to only pass messages between
variable subsets and their direct sub- and superclus-
ters (which may be other variable subsets). For nota-
tional convenience we stick to the full set of all con-
straints between outer clusters and variable subsets
and to the ordering of updates as outlined in Algo-
rithm 1. In practice, there may be a lot to gain with
clever choices, especially with regard to speed of con-
vergence (see e.g. [20] where the scheduling of updates
follows the structure of a spanning tree).

2.3 DOUBLE-LOOP ALGORITHM

One of the problems with (generalized) loopy belief
propagation is that convergence to a minimum of the
Kikuchi free energy cannot be guaranteed. In fact,
simple examples can be constructed in which minima
of the Bethe free energy are unstable under loopy be-
lief propagation, even in the limit of infinitely small

2To make the connection with the junction tree al-
gorithm explicit, consider two cliques, called o and o,
with their separator 5. By construction we have ¢z =
—1 and ng = 2. Alternately we set, instead of (9),
Py (x3) = Pa(xp) and P3®V(zg) = P.(2zp). Suppose
that at some point we have Pg(zp) = P, (zg) and thus set
Pnew(xg) = P, (zg). We then apply the update (8) for

P, (X,), without updating P,/ (X,). It is easy to check
that this update scheme also keeps (2) invariant.



step sizes € [3]. The more direct approach is then to
minimize the Kikuchi free energy (4) under the con-
straints (3). This constrained minimization problem
is well-defined, but not necessarily convex, mainly be-
cause of the negative Pglog Psg-terms. The crucial
trick, implicit or explicit in recently suggested proce-
dures is to bound [24] or clamp [19] the possibly con-
cave part (outer loop: recompute the bound) and solve
the remaining convex problem (inner loop: maximiza-
tion with respect to Lagrange multipliers). Here we
will restrict ourselves to the case in which all over-
counting numbers cg corresponding to the variable
subsets [ are negative (the terms with positive over-
counting numbers are convex anyways and incorporat-
ing them only complicates notation; furthermore pos-
itive overcounting numbers cg do not occur in any of
the examples below).

Using the linear bound

— > Ps(wp)log Ps(xp) < — > Ps(zp)log P§'(zs)
zg zp
(13)
from KL(Ps, Pg'9) > 0 and with Pg§'4(xzp) the previ-
ous setting of the variable beliefs, we can construct a
convex bound of the Kikuchi free energy:

P, (X,
Fbound(P) = ZZPa(Xa) IOg [% Z F(P) )
a X, a [0
(14)
with
log ¥y (X,) =log ¥a(Xa) — Z C—'Blongld(mg) .
ng
BCa
(15)

Each outer-loop step corresponds to a reset of the
bound, i.e., at the start of the inner loop we have
Foound(P) = F(P). In the inner loop, we solve the
constrained minimization problem implied by the con-
vex bound. This is a convex problem with linear
constraints, which thus has a unique solution. At
the end of the inner loop, we then have F(P"V) <
Fbound(Pnew) < Fbound(P) = F(P)

For the inner loop, we can simply apply the algo-
rithm outlined in the previous section. Comparing
the bound (14) with the original Kikuchi free energy,
we note that it has exactly the same form: we only
have to make the substitutions ¥, for ¥, and ¢g = 0.
With these substitutions, the updates described in
Algorithm 1 are not just fixed point iterations, but
guarantee convergence to the unique minimum of the
bound (14) under the appropriate constraints. In fact,
with the particular scheduling of Algorithm 1 (run over
variable subsets and update all neighboring factor be-
liefs) we do not need any damping, i.e., can take € = 1.
A proof can be found in [3] (construct the concave

Algorithm 2 Convergent double-loop algorithm.

initialize Pg(zg) =1
repeat
update ¥, (X,) as in (15)
run Algorithm 1 with ¥, = ¥, and cg=0
until convergence
return P, (X,) and Pg(zg)

Lagrangian, derive updates of the Lagrange multipli-
ers from the fixed point equations, show that these
guarantee an increase in the Langragian unless the La-
grange multipliers are at the unique maximum, turn
the updates in the Lagrange multipliers into updates
in variable and factor beliefs).

The resulting double-loop algorithm is summarized in
Algorithm 2. It is similar in spirit to the CCCP al-
gorithm of [24]. The use of the bound (13) and the
observation that there is no need to pass messages
between variable subsets and other variable subsets
makes Algorithm 2 somewhat easier to implement.
Furthermore, it translates directly to the case of hy-
brid Bayesian networks, to be discussed next.

3 HYBRID BAYESIAN NETS

3.1 WEAK MARGINALIZATION

Now that we have done all the ground work, we can
try and apply the above machinery to approximate in-
ference in hybrid Bayesian networks consisting of both
discrete and continuous nodes.

The crucial operations for the discrete case are the
updates (8) and (9), combined with the definition (10).
All operations are (weighted) products and divisions of
marginals, except for the marginalization

Pa(zg) = Y Pa(Xa), (16)
X

a\p

which corresponds to a sum-operation (hence the name
“sum-product algorithm”). Discrete potentials and
beliefs can be represented as tables. Marginalizing out
variables yields another table of smaller size. Changing
summation into integration, we can handle Bayesian
networks consisting of continuous Gaussian variables
in a similar manner. Continuous Gaussian potentials
and beliefs are summarized with a mean, covariance
matrix, and (if necessary) proportionality constant.
Marginalization is again “closed”: integrating out vari-
ables of a Gaussian yields another (smaller) Gaussian.

The combination of both discrete and continuous
Gaussian variables yields a conditional Gaussian. A
conditional Gaussian potential on X = {S, Z} is a dif-
ferent Gaussian distribution on the continuous variable



Z for each realization of the discrete part S. It can be
written in the form

WS =i,7) = piexp | —5(Z — w)/S7 (2 — )
The important difference with the pure discrete and
pure Gaussian case is that marginalization of condi-
tional Gaussian beliefs is not closed: summing out dis-
crete variables yields a mixture of Gaussians, which is
not a conditional Gaussian. To see this, consider the
conditional Gaussian P(Z, S1,S2), with Z the contin-
uous variable and S; and Ss two discrete variables.
We have |S1| x |S2| different Gaussians, one for each
realization of {S1, Sa}. Now, the distribution P(Z, S1)
that follows by summing out S» as in (16) boils down
to a mixture of |Sp| Gaussians for each realization
of Sy, which is not a conditional Gaussian. This
“non-closure” of conditional Gaussian potentials un-
der marginalization makes exact inference in hybrid
Bayesian networks much harder than in networks with
just discrete or just Gaussian nodes. In fact, it can
be shown that in general inference in hybrid Bayesian
networks, even with a singly-connected structure, is
NP-hard [11]: the number of mixture components re-
quired to describe the exact distribution is exponential
in the number of discrete variables.

The standard approximation is to replace the “strong”
marginal in (16) with a “weak” marginal [7]. The
weak marginal can be defined as the conditional Gaus-
sian with the same moments as the strong marginal.
Since the conditional Gaussian is in the exponential
family, this is the best approximation in the sense
of minimizing the KL divergence [8]. With S; run-
ning over states ¢ and Sy over j, the weak marginal
P(S1,7) of P(S1,S52,7) is the conditional Gaussian
with components p; = ij,-j, i = ijﬂipij, and
S = X pjli [Zij + 0ij0y;], where pj; = pij/pi and
0ij = pij — Mq. Basically, for each different i, we col-
lapse the mixture of |Sa| Gaussians to a single Gaus-
sian with the same mean and covariance.

3.2 IMPLICATIONS FOR GBP

Summarizing, to guarantee closure under marginaliza-
tion we propose to work with weak rather than strong
marginals, i.e., we replace (16) with

P,(zp) = Collapse P(X,) . 1)
Xa\g
Perhaps surprisingly, this is about the only change that
we have to make to apply the algorithms outlined in
Section 2 for approximate inference in hybrid Bayesian
networks. We can make the following statements.

e Fixed points of Algorithm 1 correspond to ex-
trema of the Kikuchi free energy (4) under (3),

which are now to be interpreted as weak rather
than strong marginalization constraints, i.e., the
factor beliefs P,(zg) and P, (xzg) only have to
agree upon their moments.

e The bounds (13) and (14) still apply and thus
Algorithm 2 guarantees convergence to a mini-
mum of the Kikuchi free energy under the weak
marginalization constraints®.

Proofs of these statements are a direct generalization
of the ones for strong marginalization.

The collapse operation (17) turns the sum-product al-
gorithm into a “collapse-product” algorithm. In the
restricted case of non-overlapping variable subsets z3,
this collapse-product algorithm can be mapped onto
expectation propagation [14]. Perhaps the case of over-
lapping subsets and weak marginalization can be in-
terpreted as “generalized” expectation propagation, in
much the same sense as “generalized” belief propaga-
tion generalizes upon belief propagation.

Generalized belief propagation with weak marginaliza-
tion relates to the strong junction tree algorithm of [7]
in the same way as generalized belief propagation with
strong marginalization relates to the (standard) junc-
tion tree algorithm. The strong junction tree results
from a procedure called strong triangulation. In terms
of an elimination ordering strong triangulation corre-
sponds to eliminating the continuous variables before
the discrete ones [2]. In practice, this often boils down
to having all discrete variables in one clique (as is
the case for all strong junction trees that can be con-
structed from the example in Figure 1). The strong
junction tree algorithm is “exact” in the sense that it
yields the correct distribution over the discrete vari-
ables and the correct means and covariances for the
continuous ones. The claim, to be empirically checked
below, is that if we choose as our outer clusters the
cliques of the strong junction tree, we arrive at the
same “exact” solution as the strong junction tree al-
gorithm.

4 SIMULATIONS

4.1 CONDITIONAL GAUSSIAN MODEL

Our first set of simulations considers the emission net-
work of [7], visualized in Figure 1. We followed the

3A slight difference is that in the inner loop we may
have to resort to a step size € < 1: the guaranteed increase
in the Lagrangian for step size ¢ = 1 is specific to strong
marginalization. However, the proposed updates still cor-
respond to gradient ascent on the Lagrangian and standard
techniques can be applied to find an appropriate step size.
See [4] for the same phenomenom.



exact same experiments as those described in [7]. We
ran our algorithms for many different choices of outer
clusters. Typical results are summarized in Table 1.
In all cases that the outer clusters correspond to the
cliques of a strong junction tree, the obtained single-
node probabilities, means and covariances are equal
to the ones computed with “brute force” (putting all
nodes in a single clique). Without evidence, the clus-
ters in (6) that correspond to a weak rather than
strong junction tree also give the exact results. Mi-
nor differences are found for the minimal approxima-
tion (both with and without evidence) and the “weak”
approximation (with evidence).

4.2 DISCRETE CHILDREN OF
CONTINUOUS PARENTS

The emission network of Figure 1 is a conditional lin-
ear Gaussian model. In conditional linear Gaussian
models there are no discrete children with continuous
parents. As a consequence, the exact distribution is
a conditional Gaussian. The more complicated case
that includes discrete children of continuous parents is
treated in [15, 13]. It fits well within our framework:
the only extra complication is that the collapse opera-
tion (17) can no longer be computed analytically, but
requires numerical integration (see [13] for details). As
an example, we tried to reproduce the experiment re-
ported in [13] on the extended emission network, which
includes three discrete sensor nodes (dust, CO2, and
metal) attached to the corresponding continuous emis-
sion nodes. In this experiment, both the metal and
CO2 sensor are clamped to “high” and the distribu-
tion of the dust sensor (D) is queried.

We ran the algorithms on several junction trees, all
“strong” according to the definitions in [13], and com-
pared the resulting marginals with the brute-force
marginals obtained by putting all variables into a sin-
gle cluster. With all strong junction trees, we replicate
the brute-force result D = 3.419 &+ 1.007 and obtain a
summed KL-divergence equal to zero within machine
precision. Results obtained with clusters following the
cliques of a weak junction tree (as in (6) with the
additional softmax potentials added individually) and
with the minimal approximation corresponding to the
cliques in a moralized graph are of about the same (ac-
ceptable) quality: D = 3.397 + 0.838 with a summed
KL-divergence of 0.029 and D = 3.494 £+ 1.005 with
a summed KL-divergence of 0.014, respectively. Simi-
lar performance is obtained with other cluster choices.
Both the “weak” and the minimal approximation lead
to a considerable speedup. For example, our weak
junction tree had at most 3 discrete variables in each
cluster and the minimal approximation at most 2,
which is to be compared with 5 in the smallest strong

junction trees.

5 DISCUSSION

We have shown that by changing strong into weak
marginalization, algorithms designed for approximate
inference in (loopy) discrete networks can be directly
transfered to hybrid networks. The connection with
the Bethe and Kikuchi free energies give these meth-
ods a strong theoretical basis and the empirical results
are very promising. At least, the Kikuchi approxima-
tion provide a viable alternative to the (structured)
mean-field approaches [5, 21].

There is still a lot of work to do. Sometimes conver-
gence can be really slow, for no obvious reason. This
may have to do with numerical stability, but can also
be related to “supportiveness”: what guarantees that
the constructed factor beliefs are normalizable? More
generally, both the single-loop and double-loop algo-
rithms can probably be much improved upon, espe-
cially with more clever scheduling of updates following
ideas in e.g. [20] and choice of necessary constraints
(see the discussion in Section 2.2). Important open
theoretical questions are under which conditions the
Bethe and Kikuchi free are bounded from below (the
proof in [14] for the Bethe free energy of expectation
propagation has the premise that all potentials are fi-
nite, which need not be the case in hybrid networks)
and have a unique minimum. Last but not least, the
current set of algorithms incorporates all evidence in
the definition of the potentials and therefore does not
allow for fast retraction, which may be an important
issue in practical applications.
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