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Abstract

Loopy and generalized belief propa-
gation are popular algorithms for ap-
proximate inference in Markov ran-
dom fields and Bayesian networks.
Fixed points of these algorithms cor-
respond to extrema of the Bethe
and Kikuchi free energy (Yedidia
et al., 2001). However, belief prop-
agation does not always converge,
which motivates approaches that ex-
plicitly minimize the Kikuchi/Bethe
free energy, such as CCCP (Yuille,
2002) and UPS (Teh and Welling,
2002). Here we describe a class
of algorithms that solves this typ-
ically non-convex constrained min-
imization problem through a se-
quence of convex constrained mini-
mizations of upper bounds on the
Kikuchi free energy. Intuitively one
would expect tighter bounds to lead
to faster algorithms, which is in-
deed convincingly demonstrated in
our simulations. Several ideas are ap-
plied to obtain tight convex bounds
that yield dramatic speed-ups over
CCCP.

1 Introduction

Loopy and generalized belief propagation are
variational algorithms for approximate infer-
ence in Markov random fields and Bayesian
networks. Fixed points of loopy and gener-
alized belief propagation have been shown to
correspond to extrema of the so-called Bethe

and Kikuchi free energy, respectively (Yedidia
et al., 2001). However, convergence of loopy
and generalized belief propagation to a stable
fixed point is not guaranteed and new algo-
rithms have therefore been derived that ex-
plicitly minimize the Bethe and Kikuchi free
energy (Yuille, 2002; Teh and Welling, 2002).
Alas, these algorithms tend to be rather slow
and the goal in this article is to come up with
faster alternatives.

As we will see in Section 2, minimization
of the Kikuchi free energy corresponds to a
usually non-convex constrained minimization
problem. Non-convex constrained minimiza-
tion problems are known to be rather difficult,
so in Section 3 we will first derive conditions
for the Kikuchi free energy to be convex. In
Section 4 we will then derive a class of con-
verging double-loop algorithms, in which each
inner loop corresponds to constrained mini-
mization of a convex bound on the Kikuchi free
energy and each outer-loop step to a recalcu-
lation of this bound. Based on the intuition
that tighter bounds yield faster algorithms, we
come up with several ideas to construct tight
bounds. The simulations in Section 5 illus-
trate the use of tight convex bounds. Implica-
tions are discussed in Section 6.

2 Cluster Variation Method

The exact joint distribution for both undi-
rected (Markov random fields) and directed
(Bayesian networks) graphical models can be
written in the factorized form

Pexact(X) =
1

Z

∏

α

Ψα(Xα) , (1)



with Ψα potentials, functions defined on the
potential subsetsXα and Z the proper normal-
ization constant. Computing this normaliza-
tion constant, as well as computing marginals
on subsets of variables, in principle requires
summation over an exponential number of
states. To circumvent this exponential sum-
mation there are two kinds of approaches:
sampling techniques and variational methods.

Variational methods are based on tractable
approximations of the Helmholtz free energy

F (P ) = E(P ) − S(P ) , (2)

with the energy

E(P ) ≡ −
∑

α

∑

Xα

P (Xα)ψα(Xα) ,

where ψα(Xα) ≡ log Ψα(Xα), and the entropy

S(P ) ≡ −
∑

X

P (X) log P (X) .

Functional minimization of F (P ) with respect
to P (X) under the constraint that P (X) is
properly normalized yields Pexact(X). Fur-
thermore, the partition function Z then fol-
lows from − logZ = F (Pexact). The varia-
tional approximations of the exact free en-
ergy (2) can be roughly divided into two
classes, the “mean-field” and the “cluster vari-
ation” methods. In the cluster variation
method (CVM), we represent the probabil-
ity distribution P (X) through a large num-
ber of (possibly overlapping) probability dis-
tributions, each describing a subset (cluster) of
variables. The minimal choice of these clusters
are the subsets Xα that specify the factoriza-
tion of the potentials. Roughly speaking, the
larger the size of the clusters, the more ac-
curate the approximation, but the higher the
computational complexity (exponential in the
size of the clusters). Without loss of general-
ity, we redefine the subsets Xα in (1) to be the
clusters used in the CVM.

Given these “outer clusters” α, the so-called
Kikuchi approximation of the free energy (2)
then leaves the energy term as is and approx-
imates the entropy S(P ) ≈ SKik(P ) through a
combination of marginal entropies:

SKik(P ) =
∑

α

Sα(P ) +
∑

β

cβSβ(P ) , (3)

with

Sα(P ) ≡ −
∑

Xα

P (Xα) log P (Xα)

Here the parameters cβ are referred to as Moe-
bius or overcounting numbers. The “vari-
able subsets” xβ , written in lower case to
distinguish them from the outer clusters Xα,
are subsets and typically intersections of two
or more outer clusters. In the original
CVM (Kikuchi, 1951), the variable subsets
consist of all intersections of the outer clusters,
intersections of intersections, and so on. With
V the collection of all variable subsets and U

the collection of all outer clusters, the over-
counting numbers in the original CVM follow
Moebius formula

cα = 1 ∀α∈U and cγ = 1−
∑

γ′⊃γ

cγ′ ∀γ∈V . (4)

The overcounting numbers for the variable
subsets are usually negative, but can also
be positive (e.g., for intersections of intersec-
tions). We will refer to the respective col-
lections as V− and V+. The collection R ≡
U ∪ V of all “regions” is a so-called par-
tially ordered set or “poset” where the order-
ing is defined with respect to the inclusion
operator ⊂ (Pakzad and Anantharam, 2002;
McEliece and Yildirim, 2003). It can be vi-
sualized with a region graph or Hasse dia-
gram (see (Yedidia et al., 2002)). Several ex-
tensions, with other constraints on the choice
of variable subsets and overcounting numbers,
have been proposed recently. An overview
can be found in (Yedidia et al., 2002). Here
we will call any approximation of the entropy
as in (3) a Kikuchi approximation, with the
Bethe approximation the special case of non-
overlapping variable subsets.

The Kikuchi approximation of the free energy
only depends on the marginals P (Xα) and
P (xβ). We now replace minimization of the
free energy over the joint distribution P (X)
by minimization of the Kikuchi free energy

FKik(Q) =
∑

α

Eα(Qα) − SKik(Q) , (5)

with

Eα(Qα) ≡ −
∑

Xα

Qα(Xα)ψα(Xα) ,



over consistent and normalized pseudo-
marginals Q = {Qα, Qβ}, i.e., under the con-
sistency and normalization constraints

∑

xγ′\γ

Qγ′(xγ′) = Qγ(xγ) ∀γ′⊃γ

∑

xγ

Qγ(xγ) = 1 ∀γ . (6)

Referring to the class of consistent and nor-
malized pseudo-marginals as Q, we have
− logZ ≈ minQ∈Q FKik(Q). Furthermore, the
hope is that the pseudo-marginals Qα(Xα)
corresponding to this minimum are accu-
rate approximations of the exact marginals
Pexact(Xα). The Kikuchi free energy and cor-
responding marginals are exact if the region
graph turns out to be singly-connected.

Thus, our task is to minimize the Kikuchi
free energy with respect to a set of pseudo-
marginals under linear constraints. Con-
strained minimization is relatively straight-
forward for convex problems. Therefore, we
will first discuss conditions under which the
Kikuchi free energy is effectively convex. Then
we will consider the more general case of a
non-convex Kikuchi free energy.

3 Convex Kikuchi Free Energy

In reasoning about convexity, we can disregard
the energy term because it is linear in Qα. The
entropy terms give either a convex or a con-
cave contribution, depending on whether the
corresponding overcounting numbers are posi-
tive or negative, respectively. Now, in most if
not all relevant cases, there are negative over-
counting numbers, which makes the Kikuchi
free energy (5) non-convex in {Qα, Qβ}. But
perhaps, for example using the constraints to
eliminate subset marginalsQβ in favor of outer
cluster marginals Qα, we can turn the Kikuchi
free energy into a functional that is convex
in {Qα, Qβ}. Following (Pakzad and Anan-
tharam, 2002), we therefore call a function
“convex over the constraint set” if, substitut-
ing (some of) the constraints, we can turn
the possibly non-convex function into a con-
vex one. The idea, formulated in the follow-
ing theorem, is then that the Kikuchi free en-
ergy is convex over the constraint set if we can
compensate the concave contributions of the

negative variable subsets β ∈ V− by the con-
vex contributions of outer clusters and positive
variable subsets γ ∈ R+ (R+ ≡ U ∪ V+).

Theorem 3.1 The Kikuchi free energy is
convex over the set of consistency constraints
if there exists an “allocation matrix” Aγβ be-
tween positive regions γ ∈ R+ and negative
variable subsets β ∈ V− satisfying

1. γ can be used to compensate for β:

Aγβ 6= 0 only if γ ⊃ β

2. positive compensation: Aγβ ≥ 0

3. sufficient resources:
∑

β⊂γ

Aγβ ≤ cγ ∀γ∈R+

4. sufficient compensation:
∑

γ⊃β

Aγβ ≥ |cβ | ∀β∈V−

Sketch of proof. The combination of a con-
vex entropy contribution from γ ∈ R+ with
the concave entropy contribution from β ∈ V−,
where β ⊂ γ,

−Sγ(Qγ) + Sβ(Qβ)

is convex over the constraint Qγ(xβ) =
Qβ(xβ). The proof then follows from a decom-
position of the entropy into terms that are all
convex when the conditions are satisfied.

The conditions of Theorem 3.1 can be checked
with a linear program. It follows from this
theorem that the Bethe free energy is convex
over the constraint set if the graph contains a
single loop. Furthermore, if the graph contains
two or more connected cycles, the conditions
fail. A similar theorem with the same corollary
is given in (Pakzad and Anantharam, 2002;
McEliece and Yildirim, 2003).

If the Kikuchi free energy is convex over the
constraint set, it must have a unique mini-
mum. The message passing algorithm out-
lined in Algorithm 1 then converges to this
minimum, with perhaps a little damping in
the case of negative cβ (see similar argumen-
tation in (Wainwright et al., 2003); cβ = 0 is
just fine). Algorithm 1 is a specific instance



Algorithm 1 Message-passing algorithm.

1: while ¬converged do

2: for all β ∈ V do

3: for all α ∈ U,α ⊃ β do

4: Qα(xβ) =
∑

Xα\β

Qα(Xα)

5: µα→β(xβ) =
Qα(xβ)

µβ→α(xβ)

6: end for

7: Qβ(xβ) ∝
∏

α⊃β

µα→β(xβ)
1

nβ+cβ

8: for all α ∈ U,α ⊃ β do

9: µβ→α(xβ) =
Qβ(xβ)

µα→β(xβ)

10: Qα(Xα) ∝ Ψα(Xα)
∏

β⊂α

µβ→α(xβ)

11: end for

12: end for

13: end while

of generalized belief propagation and reduces
to standard loopy belief propagation for the
Bethe free energy, where cβ = 1 − nβ with nβ

the number of neighboring outer clusters.

4 Double-Loop Algorithms

4.1 General Procedure

Fixed points of Algorithm 1 correspond to ex-
trema of the Kikuchi free energy under the
appropriate constraints (Yedidia et al., 2001).
However, in practice this single-loop algorithm
does not always converge and we have to re-
sort to double-loop algorithms to guarantee
convergence to a minimum of the Kikuchi free
energy. Here we will introduce a class of such
algorithms based on the following theorem.

Theorem 4.1 Given an at least twice differ-
entiable function Fconv(Q,Q

′) with properties

1. Fconv(Q,Q
′) ≥ FKik(Q) ∀Q,Q′∈Q

2. Fconv(Q,Q) = FKik(Q) ∀Q∈Q

3. Fconv(Q,Q
′) is convex in Q ∈ Q ∀Q′∈Q

the algorithm

Qn+1 = argmin
Q∈Q

Fconv(Q,Qn) , (7)

with Qn the pseudo-marginals at iteration n,
is guaranteed to converge to a local minimum
of the Kikuchi free energy FKik(Q) under the
appropriate constraints.

Proof. It is immediate that the Kikuchi free
energy decreases with each iteration:

FKik(Qn+1) ≤ Fconv(Qn+1, Qn)

≤ Fconv(Qn, Qn) = FKik(Qn) ,

where the first inequality follows from con-
dition 1 (upper bound) and the second from
the definition of the algorithm. Condition 2
(touching) in combination with differentiabil-
ity ensures that the algorithm is only station-
ary in points where the gradient of FKik is zero.
By construction Qn ∈ Q for all n.

Convexity of Fconv has not been used to es-
tablish the proof. However, constrained min-
imization of a convex functional is much sim-
pler than constrained minimization of a non-
convex functional. This general idea, re-
placing the minimization of a complex func-
tional by the consecutive minimization of eas-
ier to handle upper bounds, forms the ba-
sis of popular algorithms such as the EM al-
gorithm (Neal and Hinton, 1998), iterative
scaling/iterative proportional fitting (Jiroušek
and Přeučil, 1995), and algorithms for non-
negative matrix factorization (Lee and Seung,
2001). Intuitively, the tighter the bound, the
faster the algorithm.

4.2 Bounding the Concave Terms

As a first step, to lay out the main ideas, we
build a convex bound by removing all concave
entropy contributions for β ∈ V−. To do so,
we will make use of the linear bound

Sβ(Qβ) = −
∑

xβ

Qβ(xβ) logQβ(xβ) ≤

−
∑

xβ

Qβ(xβ) logQ′
β(xβ) ≡ Sβ(Qβ, Q

′
β) , (8)

which directly follows from KL(Qβ , Q
′
β) ≥ 0

with KL the Kullback-Leibler divergence. Our
choice Fconv then reads

Fconv1(Q,Q
′) =

∑

α

Eα(Qα) −
∑

α

Sα(Qα)

−
∑

β∈V+

cβSβ(Qβ) −
∑

β∈V−

cβSβ(Qβ , Q
′
β) .



It is easy to check that this functional satisfies
all conditions for Theorem 4.2.

Next we make the pleasant observation that,
using the constraints (6) and for fixed Q′, we
can rewrite Fconv1 in the “normal form” (5)
through a redefinition of the overcounting
numbers and the potentials. The new over-
counting numbers c̃β refer to all unbounded
entropy contributions; for Fconv1

c̃β = 0 ∀β∈V− and c̃β = cβ ∀β∈V+
. (9)

The bounded entropy contributions can be in-
corporated in the energy term by redefining
the (log) potentials, for example through

ψ̃α(Xα)=ψα(Xα) −
∑

β⊂α

(cβ − c̃β)

nβ

logQ′
β(xβ) .

(10)
With Fconv1 both convex and in normal form,
we can use Algorithm 1, with substitutions

cβ ⇐ c̃β and ψα ⇐ ψ̃α , (11)

to solve the constrained problem (7).

The general setting of the double-loop algo-
rithm is as follows.

Beforehand: choose c̃β, e.g. as in (9).

Outer: compute ψ̃α from (10) with Q′ = Qn.

Inner: Algorithm 1 with (11) yielding Qn+1.

4.3 Bounding Convex Terms As Well

In many cases we can make the algorithm both
better and simpler by bounding not only the
concave, but also the convex entropy contri-
butions. That is, we define Fconv2 by setting

c̃β = 0 ∀β∈V . (12)

The basic algorithm and potential up-
dates (10) stay the same, but now with (12)
instead of (9).

The algorithm based on Fconv2 is simpler than
the one based on Fconv1 because it typically
runs over less variable subsets: all variable
subsets that have zero overcounting number
and are not direct intersections of outer clus-
ters can be left out in the inner loop.

From (8), but now applied to the positive vari-
able subsets, it is clear that Fconv2(Q,Q

′) ≤
Fconv1(Q,Q

′): when it is a bound, Fconv2 is a
tighter bound than Fconv1 and we can expect
the algorithm based on Fconv2 to perform bet-
ter. It remains to be shown under which con-
ditions FKik(Q) ≤ Fconv2(Q,Q

′). This is where
the following theorem comes in.

Theorem 4.2 Fconv2 defined from (12) is a
convex bound of the Kikuchi free energy (5)
if there exists an “allocation matrix” Aγβ be-
tween negative variable subsets γ ∈ V− and
positive variable subsets β ∈ V+ satisfying

1. Aγβ 6= 0 only if γ ⊃ β

2. Aγβ ≥ 0

3.
∑

β⊂γ

Aγβ ≤ |cγ | ∀γ∈V−

4.
∑

γ⊃β

Aγβ ≥ cβ ∀β∈V+

(13)

Sketch of proof. We follow the same line of
reasoning as the proof of Theorem 3.1. First
we note that, if β ⊂ γ,

Sγ(Qγ)−Sβ(Qβ) ≤ Sγ(Qγ , Q
′
γ)−Sβ(Qβ, Q

′
β) ,

i.e., if we bound a concave Sγ(Qγ), we can
incorporate a convex −Sβ(Qβ) to make the
bound tighter. Shielding all convex contribu-
tions with concave contributions is then again
a matter of resource allocation.

As above, the conditions for Theorem 4.2 can
be checked with a linear program. In practice,
these conditions hold more often than not.

4.4 Just Convex over the Constraints

The bounds Fconv1 and Fconv2 are convex with-
out reference to the constraints. We can make
the bound tighter by bounding less concave en-
tropy contributions, but just enough to make
it convex over the constraint set instead of con-
vex per se. And again, following the ideas in
the previous section, we can try to incorporate
convex entropy contributions in the concave
terms that have to be bounded anyway. This
is implemented in the following procedure.



1. Choose c̃β ≥ cβ for β ∈ V− such that

−







∑

α

Sα +
∑

β∈V−

c̃βSβ +
∑

γ∈V+

cγSγ







is (just) convex over the constraint set. The
remaining (cβ − c̃β)Sβ will be bounded.

2. With A the corresponding allocation matrix
of Theorem 3.1, define the “used resources”

∀γ∈V+
ĉγ ≡

∑

β∈V−

Aγβ|c̃β | ≤ cγ ,

and thus “unused resources” cγ − ĉγ .

3. To make the bound tighter, incorporate as
many of the unused −(cγ − ĉγ)Sγ convex con-
tributions as possible in the (cβ − c̃β)Sβ con-
cave contributions that have to be bounded
anyway. Call the corresponding overcounting
numbers cγ − c̃γ ≤ cγ − ĉγ .

The inner-loop overcounting numbers c̃β in the
first step and c̃γ in the third can be found with
a linear program and again fully specify the
convex bound, referred to as Fconv3, and the
corresponding double-loop algorithm.

4.5 Related Work

Although originally formulated in a different
way, the CCCP (concave-convex procedure)
algorithm of (Yuille, 2002) can also be under-
stood as a particular case of the general pro-
cedure outlined in Theorem 4.1. More specifi-
cally, it is based on bounding the concave con-
tributions with

|cβ |Sβ(Qβ) ≤ −Sβ(Qβ)+(|cβ|+1)Sβ(Qβ, Q
′
β),

which is to be compared with (8). That is,
before bounding the concave entropy contri-
butions, part of them are taken over to the
“convex side”. In terms of the inner-loop over-
counting numbers c̃β this amounts to

c̃β = 1 ∀β∈V− and c̃β = cβ ∀β∈V+
. (14)

This makes the bound less tight1.

1In (Yuille, 2002) it is further suggested to take
convex terms to the concave side, in particular to set
c̃β = maxβ′ cβ′ ∀β∈R. This tends to make the bound
a lot looser. Here we will stick to the more favorable
interpretation based on (14).

The UPS (unified propagation and scaling)
algorithm of (Teh and Welling, 2002) also
replaces constrained minimization of a non-
convex function by sequential minimization of
functions that are convex over the constraint
set, fairly similar to our algorithm based on
Fconv3. The main difference is that where we
bound part of the concave entropy contribu-
tions, UPS clamps some of them. This makes
UPS considerably less flexible.

In (Wainwright et al., 2003) convex bounds
on the exact Helmholtz free energy (2) are
presented. In these bounds, the overcounting
numbers for the variable subsets still follow the
Moebius relationship (4), but the overcount-
ing numbers for the outer clusters are smaller
than or equal to 1. Constrained minimization
of this bound is very similar to constrained
minimization of Fconv3 and the algorithm pro-
posed in (Wainwright et al., 2003) is indeed
closely related to Algorithm 1.

5 Simulations

We have done simulations on quite a num-
ber of different problems and problem in-
stances, involving both Markov random fields
and Bayesian networks. In Figure 1 we give
a few examples, meant to illustrate the gen-
eral picture that we will summarize below. In
our setup, the different algorithms only dif-
fer in the (tightness of the) convex bounds
used in the inner loop, represented through the
inner-loop overcounting numbers c̃β : just con-
vex over the set of constraints as explained in
Section 4.4 (solid lines), with all entropy con-
tributions bounded using (12) in Section 4.3
(dotted), with only the concave contributions
bounded using (9) in Section 4.2 (dashed), and
our rather favorable interpretation (14) of the
bound implicit in the CCCP algorithm (dash-
dotted). In all cases, the convex constrained
minimization in the inner loop is solved by Al-
gorithm 1, which is run until a preset criterion
is met (here until the variable subset marginals
change less than 10−4). We report on the
Kullback-Leibler divergence between approx-
imate and exact single-node marginals (top
row). Where we expect the algorithm based on
the tightest bound to converge the fastest in
terms of outer-loop iterations, we might need



0 100

10
−2

10
0

kl
−

di
ve

rg
en

ce

just conv
all
only conc
cccp

#iter (outer)

(a)

0 50 100

10
−4

10
−1

#iter (outer)

(b)

0 500 1000

10
0

10
1

#iter (outer)

(c)

0 500
10

−5

10
−1

#iter (outer)

(d)

0 500 1000

10
−3

10
0

#iter (outer)

(e)

20 40
0

5

#iter (outer’)

#i
te

r 
(in

ne
r)

20 40
0

5

#iter (outer’)
10 20

0

10

20

#iter (outer’)
60 120

0

5

#iter (outer’)
10 20

0

20

#iter (outer’)

bound
∑

β∈V−

c̃β

∑

β∈V+

c̃β

∑

β∈V−

c̃β

∑

β∈V+

c̃β

∑

β∈V−

c̃β

∑

β∈V+

c̃β

∑

β∈V−

c̃β

∑

β∈V+

c̃β

∑

β∈V−

c̃β

∑

β∈V+

c̃β

none -207 0 -56 0 -112 49 -140 120 -54 35
just conv -144 0 -28 0 -64 1 -56 36 -34 15

all 0 0 0 0 0 0 0 0 0 0
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Figure 1: Top: KL-divergence between exact and approximate marginals. Middle: number of
inner-loop iterations required to meet a fixed convergence criterion. Bottom: inner-loop over-
counting numbers. (a) Bethe and (c) Kikuchi (outer clusters 4 neighbors) on a 9x9 Boltzmann
grid. (b) Bethe and (d) Kikuchi (outer clusters all triplets) on an 8-node fully connected Boltz-
mann machine. (e) Kikuchi on a 20x10 QMR network. See the text for further explanation.

more inner-loop iterations to achieve conver-
gence in the inner loop. Therefore we also plot
the number of inner-loop iterations required to
meet the convergence criterion (middle row).
To make them comparable, the outer-loop it-
erations on the x-axis are scaled relative to
those required for the just-convex algorithm
to reach the same level of accuracy. The
inner-loop overcounting numbers give an indi-
cation of the tightness of the bounds (bottom
row: the lower, the tighter), with those for the
Kikuchi free energy itself on the first line.

Here we summarize our main experimental
findings, based on the simulations visualized
in Figure 1 and many other problem instances.

• The tighter the (convex) bound used in the
inner loop, the faster the convergence in terms
of outer-loop iterations: the ordering in Fig-
ure 1 is always (from fastest to slowest) just
convex, all bounded, concave bounded, CCCP.

• The number of inner-loop iterations needed
to meet a preset convergence criterion some-
times decreases with a looser bound, but never
enough to compensate for the slower conver-

gence in the outer loop. For example, in Fig-
ure 1(e) the just-convex algorithm uses much
more inner-loop iterations per outer-loop it-
eration than the other three algorithms, but
this is compensated by the more than ten-fold
speed-up in the outer loop. Note further that
the inner-loop convergence criterion is rather
strict: all algorithms would probably do just
fine with a (much) looser criterion.

• In terms of floating point operations, a
looser bound that sets all overcounting num-
bers in the inner loop to zero, occasionally
beats a tighter bound with negative overcount-
ing numbers: the slower convergence in terms
of outer-loop iterations is compensated by a
more efficient inner loop (see Section 4.3).

6 Discussion

This article is based on the perspective that we
are interested in minima of the Kikuchi free
energy under appropriate constraints. Find-
ing such a minimum then becomes a possibly
non-convex constrained minimization prob-



lem. Here, as well as in other studies, the ap-
proach has been to solve this non-convex prob-
lem through sequential constrained minimiza-
tion of convex bounds on the Kikuchi free en-
ergy. On the presumption that tighter bounds
yield faster algorithms, we have worked out
several ideas to construct tight convex bounds.
The simulation results clearly validate this
presumption and show that the speed-ups can
be very significant.

It has been suggested that if generalized/loopy
belief propagation does not converge, it
makes no sense to explicitly minimize the
Kikuchi/Bethe free energy. Others have
reported acceptable approximations that a
single-loop approach did not manage to con-
verge to (the results in Figure 1(c), (d), and
(e) are examples hereof). It seems that there
is a definite “middle range” in which gener-
alized/loopy belief propagation does not con-
verge, yet the minimum of the (non-convex)
Kikuchi/Bethe free energy does correspond to
a fairly accurate approximation of the mini-
mum of the exact Helmholtz free energy.

For convergence of (a damped version of) the
single-loop algorithm 1, it is sufficient but not
necessary for the bound Fconv to be convex
over the constraint set. That is, one might well
try to start with a tighter non-convex bound,
check whether Algorithm 1 converges to a so-
lution that satisfies the constraints and cor-
responds to a lower Kikuchi free energy, and
restart with a looser bound if not. Or even
better, perhaps we could come up with condi-
tions, looser than those for Theorem 3.1, based
on which we can check beforehand whether
Algorithm 1 will converge. These conditions
then should take into account not only prop-
erties of the (region) graph, but also (the size
of) the potentials, perhaps similar to those
in (Tatikonda and Jordan, 2002).
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