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Abstract

Self-organizing maps are popular algorithms for unsupervised learning and data visualization. Ex-
ploiting the link between vector quantization and mixture modeling, we derive EM algorithms for self-
organizing maps with and without missing values. We compare self-organizing maps with the elastic-net
approach and explain why the former is better suited for the visualization of high-dimensional data.
Several extensions and improvements are discussed.

1 Introduction

Self-organizing maps are popular tools for clustering and visualization of high-dimensional data [8, 13]. To
derive an error function for the self-organizing map, we will follow the vector quantization interpretation
given in, among others, [9].
A self-organizing map consists of a set of nodes r with corresponding weight vectors w,. The quantization
error of the node with weight w, given a particular input x* reads
1 2
Dl w,) = H{be —w, 7
Given a set of inputs X' and weights W, let p# denote the probability that input x* is assigned to the node
with weight w,. It is constrained by >, p# = 1 and p¥ > 0. Even if we assign input u to node r, there is a
confusion probability h,s that input g is instead quantized by the weight vector w; corresponding to node
s. hys corresponds to the lateral-interaction strength and defines the underlying manifold: usually it is a

decreasing function of the distance between nodes r and s on a two-dimensional grid. Given the data X', the
goal is now to find the probability assignments P and weights YW minimizing the error

Fquantization (7); W) = Z Z pﬁ Z hf‘s D(XN ) WS,) .

w

An annealed variant of the self-organizing map is obtained if we add an entropy term of the form

Fentropy (P) = Z Zpﬁ log I:I;_ﬁ] )
wor "

where ¢, can be interpreted as prior probability assignments. The usual choice is ¢, = 1/K with K the
number of nodes, but for later purposes we will consider here the general situation. This entropy term favors
probability assigments that are similar to ¢,, i.e., maximize the entropy for homogeneous ¢,. Annealed vector
quantization has been introduced in [12] and applied to self-organizing maps in e.g. [4].

The final “free energy functional” now follows from a weighted combination of the quantization and
entropy term:

F(P, W) - /BFquantization (P; W) + Fentmpy (P) ‘ (1)

G plays the role of an inverse temperature: the larger 3, the smaller the influence of the entropy term.
Formulation of the optimization criterion in terms of this free energy functional will be very convenient in
the derivation of EM algorithms later on.



The dependency on the assignments P can be removed by computing the optimal assignments P (W)
given a particular set of weights W:

qr €Xp [_[7) Zt hrtD(xu ) Wt)]
Zs s EXP [_ﬂ Zt hstD(X'uawt)] .

With D(x,w) continuous in w, these assignments are unique. Substitution into (1) then yields

pr(W) = (2)

EW) = mlnF (P,W) Zlongh exp l—ﬂEhTtD(x“,wt)] . (3)

This error function (with ¢, = 1/K) corresponds to an annealed version of a closely related variant of
Kohonen’s original self-organizing map algorithm [7]. The (small) differences are discussed in [6, 4]. Tt can
be shown (e.g. following a proof in [10]) that any (locally) optimal solution of F(W,P) corresponds to a
(locally) optimal solution of E(W) and vice versa. In other words, we can exchange the two optimization
criteria, as we will do throughout the paper.

In the following, we will sometimes compare with the elastic-net approach [2, 14]. Topology is introduced
by adding a penalty term to an (annealed) vector quantization error, i.e., the goal is to minimize an error
function of the form

Faric(W) = = Y108 > g oxp [=BD(x" w,)] 4 D o [[wr = wi | (4)
H r r,s
Also here the standard choice is ¢, = 1/K.

2 EM algorithm without missing values

The free energy functional (1) allows for an extremely straightforward derivation of an EM algorithm. Both
the expectation and the maximization step can be seen as minimizing this same functional [10].

The ezpectation step in the full EM algorithm follows by minimizing F (P, W) with respect to the assign-
ments P, given the current set of parameters JW. We immediately obtain (2).

The mazimization step in the full EM algorithm follows by minimizing F (P, W) with respect to the
parameters W, given the current set of assignments P. For sum-squared D(x, w), we easily find

Z,U Zr pﬁhr'gxu (5)
ZM Z,. pﬁhrs .

This EM algorithm (in the limit § — oo) is referred to as the batch-map algorithm in [1, 8]. Compared
with the elastic-net approach, the EM batch-map algorithm is surprisingly efficient: incorporation of tolopol-

w,(P) =

ogy only requires extra summations over nodes, limited to the width of the lateral interaction h,s. On the
other hand, the additive penalty term in the elastic-net approach [see (4)] makes that the M-step amounts
to solving a set of K linear equations [14].

3 A mixture-modeling interpretation

There is a close link between vector quantization and mixture modeling. Saying that a particular w, is a
good quantizer for a pattern x* because of a low quantization error D(x*, w,) is similar to stating that some
probability G(x*|w,) of finding x* given w, is quite high. The obvious choice for this probability in the
case of a sum-squared error D(x,w) is a Gaussian.

Let us first consider the case of no lateral interaction, i.e., hys = d,5. As a mixture model, we take

ﬁe Ale=w)*/2 and G (x|w) = HG (zo]wa) .
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Zq, (x|w,) with G(xz|w) =



Through simple substitution it is easy to show that, with this particular choice of mixture model and up to
irrelevant constants, we have

L(W) = log P(x*|W) = —=E(W) , (6)

I

i.e., the optimization criterion for annealed vector quantization corresponds to a maximum likelihood pro-
cedure for a mixture of Gaussians.

With lateral interaction, the link is not so obvious. To simplify the term in the exponent in (3), we need
the “bias-variance decomposition”

> heyD(z,w,) = D(x, ;) + > hyy D(iy, w,) with @, = > hygw, . (7)

The essence here 1s that the average error on the righthand side can decomposed into an error of an average
weight @, and a variance term independent of the input . The variance V. (W) = ZS hrs D(W,, W) measures
to what extent the weights vary around node r.

The decomposition is used to proof that self-organizing maps can be interpreted as mixture models with
an added regularization term. If we take the mixture model

. - . - qre_ﬁv"(w)
P(x[W) = > §-(W)G(x|W,) with ¢, (W) = PR (8)

and compute the loglikelihood, we obtain, after some rewriting, the self-organizing map error (3), except for
a term independent of the patterns X'. That is, neglecting irrelevant constants independent of W, we have

E(W) = _L(W) + Eregularization(w) ) (9)

with L(W) the loglikelihood as in (6) and the regularization term

Eregularization(w) = - Z logz qre—ﬁVr(W) . (10)
u r

4 Self-organizing maps and elastic nets

The correspondence between the self-organizing map error (9) and the elastic-net error (4) is striking. The
important difference between the two is that fixed ¢, = 1/K in (4), the standard choice in the elastic-
net approach, corresponds to fixed marginals P(r|W). This yields a tendency to make all nodes equally
important. In the self-organizing map approach, with ¢, = 1/K in (3), one can still have nodes with a low
marginal P(r|W), namely those with a high local variance V,(W). These variances are similar to what in the
literature on self-organizing maps is called the “U-matrix” [13]. The U-matrix is often visualized as a surface
on the two-dimensional topology of the self-organizing map and indicates clusters, with different clusters
separated by barriers. In mixture-modeling terms these barriers correspond to nodes with a low marginal
P(r|W), which can focus on interpolating between different clusters. An elastic-net algorithm does not have
this flexibility and therefore seems less suited for the visualization of high-dimensional data.

The regularization term (10) aims at low variances, that is, small differences between weight vectors of
neighboring nodes. This is the term that explains the self-organizing property of self-organizing maps: it
implements the tendency for neighboring nodes to represent similar input patterns. Note that the regulariza-
tion term scales with the number of patterns N = 3" . It can therefore not be truly interpreted as resulting
from a kind of Bayesian prior, since such a term would become less and less important with growing V.

5 EM algorithm with missing values

The basic idea in EM algorithms for mixture models is to extend the distribution P(x|W) to a joint dis-
tribution P(x,r|W), where the states of the nodes r are considered hidden. The extra set of parameters



P is introduced to represent the probabilities of these states. Another important application of EM is to
learning with truly missing (input) values. The combination of both missing inputs and mixture models is
pursued in [3]. The probabilistic interpretation of self-organizing maps derived in this paper allows for a
similar combination. We consider the standard situation ¢, = 1/K.

We assume that for each pattern pg some inputs are known, indicated by the lower index k£, and some
may be missing, indicated by m. We should in fact write k* and m#, but for the sake of clarity we will
leave it at k and m. From the definition of the error F(W) in vector-quantization terms, as in (3), it
is not so obvious how to incorporate missing values. The link (9), where the vector-quantization error is
decomposed in a loglikelihood term —L(W) and a regularization term Fregularization (W), provides a solution.
The regularization term is independent of the data X and thus unaffected by the presence of missing values.
The loglikelihood term, on the other hand, can only look at the known components and thus becomes

LOW) = > log P(x}i|W) with P(xg|W) = /dmmP(x|W) ,
1%

and P(x|W) from (8). Following [10] and similar to the above link between the error (3) and the free
energy (1), the free-energy functional corresponding to the error E(W) = —L(W) + Ercgularization(WV) can
be written

F(Pa W) = - Z / dl‘mpﬁ (xm) log P(XZ; xm|wr) + Z / da}mpﬁ (xm,) log pﬁ (xm,) + Eregu]arization(w) (; )
r r 11

with for each p a joint distribution pf(xm,) over both the state of the nodes and the missing inputs.
The E-step follows by minimizing free energy (11) with respect to these distributions for given W. We
state the result:

pr (xXm|[W) = pr (W) G (X [Wrm) | (12)
where we have defined
gre P o DR W)
- S o? S, hat D(EE W)

zt . if a known for p ;

Wro , If o missing in p .

pr (W)

with &/, = { (13)

In other words, the E-step in the case of missing values yields (12) with G(xm|Wrm) a Gaussian probability
distribution over the missing inputs given the current average weight Ww,,,, and p¥(W) equivalent to (2) for
the case of no missing values with missing x, replaced by w,.

The M-step is based on the minimization of the free energy (11) with respect to the parameters W for
fixed P. After straightforward manipulations we obtain

ZMerﬁhrsfcﬁ
RS S S/
u r Urilrs

with &%, as in (13). The M-step with missing values is equivalent to the M-step (5) without missing values,
using the same substitution as in the E-step for the missing x# . Really, this is what one could have expected
from the start, except that it is important to realize that the parameter used for filling in the unknown input
x4 18 the average w,,, and not the original w,.,.

(14)

6 Discussion

The batch-map algorithm corresponding to Kohonen’s original learning (see e.g. [8]) differs from the EM
algorithm discussed here in two aspects: it corresponds to the limit # — oo and has no neighbor averaging
in the E-step. The limit 8 — oo is just a special case of the analysis in this paper and contains no further
pecularities except that some of the proofs may be technically more involved because of discontinuities. The
simpler E-step can be interpreted as an approximation to the one derived in (2) which does involve neighbor
averaging. The simpler E-step is faster, but the connection with a global error function like (3) is lost. This
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Figure 1: Self-organizing map learned on data with missing values. Training set consists of 500 points in 3
dimensions, all close to the plane y = z, but with 50% of all values missing (not shown). The self-organizing
map has 8 x 12 nodes with lateral interactions h,, x exp[—d,,/20%] where d,, refers to the node distance
on a two-dimensional grid. Parameters ¢ = 0.5 and f = 100. The map manages to unfold and, as can also
be seen from the projections, finally represents the data quite well.

makes it difficult to check and proof convergence. Maps obtained through application of both winner mech-
anisms are roughly the same (for example, tested on WEBSOM, Prof. Kohonen, private communication).
The constraint ) h,, = 1 facilitates a probabilistic interpretation of the lateral interactions, but has further
no consequences.

The analysis presented in this paper focussed on sum-squared error D(z, w) and corresponding Gaussian
probability G(z|w). Tt can be easily extended to quantization errors that can be derived from probability
distributions in the exponential family. For distributions of the form

G(2|w) = exp [e(w)T(z) + d(w) + S(2)] ,
the quantization error is the deviance
D(z,w) = —log G(z|w) + log G(z|x) = [¢(x) — e(w)]T(x) + d(x) — d(w) .

c(w) is called the canonical link, T'(z) the sufficient statistic. Examples include the Gamma distribu-
tion, multinomial, and Poisson. The bias-variance decomposition (7), and thus the correspondence of self-
organizing maps to regularized mixture modeling, still holds if we define the average weight by averaging
the canonical links (see e.g. [5]):

c(@y) =D hrsc(wy) .

Furthermore, if the sufficient statistic is linear, i.e., T(2) = z as for most common distributions, we still
have the simple form (5) for the M-step. The EM algorithm for missing values stays the same for continuous
distributions where the annealing parameter 8 can be interpreted as a dispersion parameter and for all other
distributions if # = 1. There hardly seems to be a reason to restrict self-organizing maps to sum-squared
errors. Depending on the format of the data and the underlying assumptions, more appropriate quantization
errors can be chosen, perhaps even different ones for different dimensions.

The EM algorithms presented here are the standard versions. There are many different ways to speed
them up. Especially attractive and relatively simple is the “accelerated” version. The idea is to take the



new weight vectors w; " “beyond” the optimal w,(P) given in (5) and (14):
= e (P) + (1= n)u
with 1 < n < 2. The same can be done for the probabilities P in the E-step. Here we might take, for all y,

w

new old

log pr*" o nlog pr (W) + (1 — ) log py©

new

where the proportionality constant follows from the normalization ", p!

= 1. This logarithmic averaging
seems to work a little better than simple linear averaging and explicitely constrains the probabilities to
positive numbers. By applying the same reasoning as in [11], it can be shown that accelerated EM is locally
contractive (converges to a local minimum if starting sufficiently close to this minimum) for < 2. In
practice, n &~ 1.3 seems to work fine and speeds up the convergence of the EM algorithm considerably

(roughly a factor 2).
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