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al De
ision SupportSystem for Estimation of Reservoir Compositions�Willem Burgers,Wim Wiegerin
k,Bert Kappen yMirano Spalburg zMay 10, 2010Abstra
tThe exploration for oil and gas requires real-time petrophysi
al exper-tise to interpret measurement data a
quired in boreholes and to re
om-mend further steps. High time pressure and the far rea
hing nature ofthese de
isions, as well as the limited opportunity to gain in depth petro-physi
al experien
e suggests that a de
ision support system that 
an aidthe petrophysi
ist will be very useful.In this paper we des
ribe a Bayesian approa
h for obtaining 
ompo-sitional estimates that 
ombines expert knowledge with information ob-tained from measurements. We de�ne a prior model for the 
ompositionalvolume fra
tions and observation models for ea
h of the measurementtools. Both prior and observation models are based on domain expertise.These models are 
ombined in a joint probability model. To deal with thenonlinearities in the model, Bayesian inferen
e is implemented by usingthe hybrid Monte Carlo algorithm.In the system, tool measurement values 
an entered and the posteriorprobability distribution of the 
ompositional fra
tions 
an be obtainedby applying Bayes' rule. Bayesian inferen
e is also used for optimal toolsele
tion, using 
onditional entropy to sele
t the most informative tool toobtain better estimates of the reservoir.Reliability and 
onsisten
y of the method is demonstrated by inferen
eon syntheti
ally generated data.1 Introdu
tionOil and gas reservoirs are lo
ated in the earth's 
rust at depths of several kilo-meters, and when lo
ated o�shore, in water depths of a few meters to a fewkilometers. Consequently, the gathering of 
riti
al information su
h as the pres-en
e and type of hydro
arbons, size of the reservoir and the physi
al propertiesof the reservoir su
h as the porosity of the ro
k and the permeability is a keya
tivity in the oil and gas industry.�Expert Systems with Appli
ations (2010). DOI:10.1016/j.eswa.2010.04.092 (In press)ySNN Adaptive Intelligen
e, Radboud University Nijmegen, Donders Institute for Brain,Cognition and Behaviour, Geert Grooteplein 21, 6525 EZ Nijmegen, The NetherlandszShell International Exploration and Produ
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Pre-development methods to gather information on the nature of the reser-voirs range from gravimetri
, 2D and 3D seismi
 to the drilling of explorationand appraisal boreholes. Additional information is obtained while a �eld isdeveloped through data a
quisition in new development wells drilled to pro-du
e hydro
arbons, time-lapse seismi
 surveys and inwell monitoring of howthe a
tual produ
tion of hydro
arbons a�e
ts physi
al properties su
h as thepressure and temperature. The purpose of information gathering is to de
idewhi
h reservoirs 
an be developed e
onomi
ally, and how to adapt the means ofdevelopment best to the parti
ular nature of a reservoir.The early measurements a
quired in exploration, appraisal and developmentboreholes are a 
ru
ial 
omponent of the information gathering pro
ess. Thesemeasurements are typi
ally obtained from tools that 
an be in
luded in theborehole drilling equipment or from open/
ased hole logging. The range ofpossible measurements varies depending on the type of logging. Some options,su
h as 
oring, are very expensive and may even risk other data a
quisitionoptions. In general a
quiring all possible data imposes too great an e
onomi
burden on the exploration, appraisal and development. Hen
e data a
quisitionoptions must be exer
ised 
arefully bearing in mind the learnings of alreadya
quired data and general hydro
arbon �eld knowledge. Also important is a
lear understanding of what data 
an and 
annot be a
quired later and the
onsequen
es of having an in
orre
t understanding of the nature of a reservoiron the e�e
tiveness of its development.Making the right data a
quisition de
isions, as well as the best interpreta-tion of information obtained in boreholes forms one of the prin
iple tasks ofpetrophysi
ists. The eÆ
ien
y of a petrophysi
sist exe
uting her/his task issubstantially in
uen
ed by the ability to gauge her/his experien
e to the issuesat hand. EÆ
ien
y is hampered when a petrophysi
ists experien
e level is notyet fully suÆ
ient and by the rather 
ommon 
ir
umstan
e that de
isions toa
quire parti
ular types of information or not must be made in a rush, at high
osts and shortly after re
eiving other information that impa
t on that verysame de
ision. Mistakes are not entirely un
ommon and almost always painful.In 
ases, non essential data is obtained at the expense of extremely high 
ost,or essential data is not obtained at all; 
ausing development mistakes that 
anjeopardize the amount of hydro
arbon re
overable from a reservoir and indu
esigni�
ant 
ost in
reases.The overall e�e
tiveness of petrophysi
ists is expe
ted to improve in 
asea Bayesian net [Pearl, 1988℄ 
onstru
ted and populated with petrophysi
al re-lationships and knowledge is available and 
an be used as a de
ision supportsystem (DSS). In pra
ti
e a DSS 
an in
rease the petrophysi
ists awareness oflow probability but high impa
t 
ases and alleviate some of the operationalde
ision pressure. In the longer run regularly updated DSSs may serve to 
ap-ture and disseminate petrophysi
al experien
e and knowledge while also otherpetroleum engineering experts su
h as geologists, and reservoir engineers maystart to use a Bayesian DSS for their purposes.In this paper we des
ribe a Bayesian net for the estimation of 
ompositionalvolume fra
tions in a reservoir on the basis of logging data. It is an extensionof the work des
ribed in Spalburg [2004℄.The paper is organized as follows. In se
tion 2 we des
ribe the ideas of prob-abilisti
 modeling and Bayesian inferen
e for the estimation of 
ompositionalvolume fra
tions on the basis of measurements. In its subse
tions we will de-2



s
ribe the model and the inferen
e steps via a hybrid Monte Carlo sampler inmore detail. Some experiments using syntheti
 data illustrating the Bayesianinferen
e method are des
ribed in se
tion 3. In se
tion 4, we des
ribe how thesampling method 
an be used to de
ide on the most informative next measure-ments. In se
tion 3, we assess the reliability and 
onsisten
y of the method byinferen
e on syntheti
ally generated data, and we end with a dis
ussion and
on
lusions in se
tion 5.2 Probabilisti
 modelingThe primary aim of the model is to estimate the 
ompositional volume fra
tionsof a reservoir on the basis of borehole measurements. Due to in
omplete knowl-edge, limited amount of measurements and noise in the measurements, therewill be un
ertainty in the volume fra
tions. We will use Bayesian probabilitytheory to deal with this un
ertainty.The starting point is a model for the probability distribution P (~v; ~m) ofthe 
ompositional volume fra
tions ~v and borehole measurements ~m. A 
ausalargument \The 
omposition is given by the (unknown) volume fra
tions, andthe volume fra
tions determine the distribution measurement out
omes of ea
hof the tools" leads us to a Bayesian net formulation of the probabilisti
 model,P (~v; ~m) = ZYi=1P (mij~v) P (~v) :In this model, P (~v) is the so-
alled prior, the prior probability distribution ofvolume fra
tions before having seen any data. In prin
iple, the prior en
odesthe generi
 geologi
al and petrophysi
al knowledge and beliefs [Spalburg, 2004℄.The fa
tor QZi=1 P (mij~v) is the observation model. The observation model re-lates volume fra
tions ~v to measurement out
omes mi of ea
h of the Z toolsi. The observation model assumes that given the underlying volume fra
tions,measurement out
omes of the di�erent tools are independent. Ea
h term in theobservation model gives the probability density of observing out
omemi for tooli given that the 
omposition is ~v. Now given a set of measurement out
omes~mo of a subset Obs of tools, the probability distribution of the volume fra
tions
an be updated in a prin
ipled way by applying Bayes' rule,P (~vj~mo) = Qi2Obs P (moi j~v) P (~v)P (~mo) : (1)The updated distribution is 
alled the posterior distribution. The 
onstant inthe denominator P (~mo) = R~vQi2Obs P (moi j~v) P (~v) d~v is 
alled the eviden
e.The remainder of this se
tion des
ribes the prior and observation model, aswell as the sampling method that we used to obtain the posterior.2.1 PriorThe model assumes that the reservoir at the given depth is 
omposed of Kgiven minerals and 
uids. The volume fra
tion of mineral j is assumed to havea de�nite but unknown value vj whi
h is between 0 and 1. The model assumesthat the K given minerals and 
uids o

upy the whole volume of the 
omposite,3



PKj=1 vk = 1. In other words, the ve
tor of volume fra
tions ~v is 
onstrained tothe K-part simplex, de�ned by S
K � n~v 2 R

K+ ��PKj=1 vj = 1o, where R+ is thespa
e of reals > 0 (for the 
losed simplex 0 � vj � 1, but to ensure that thedivision operator is de�ned everywhere we use the open simplex 0 < vj < 1).As a shorthand notation, we will use the symbol ' to denote a summation overa set of 
ompositional parts; ' : S
K 7! [0; 1℄ � R, de�ned by '� (~v) =P8j2� vj ,where � denotes the set of minerals and 
uids to in
lude in the summation.The 
uids and minerals (see table 1) are 
lustered into three basi
 geologi
algroups: the non-reservoir minerals N , matrix minerals M and 
uid mineralsF . The number of minerals in ea
h group is indi
ated by the symbol #. Thenumber of distin
t groups in the simplex is #
 = �(#N )+� (#M)+� (#F),where � : Z 7! f0; 1g ; � (n) = 1 () n > 0. The model allows to de
reasethe number of minerals and 
uids K by ex
luding these from the prior. In su
h
ase, a mineral group 
an be 
ompletely absent. Most 
ommonly applied priorName Groups1 Shale N2 Coal N3 Quartz M , R4 Dolomite M , R5 Cal
ite M , R6 Clay (wet)y M , R7 Halite M , R8 Pyrite M , R9 Siderite M , R10 Bound-water F , R11 Free-water F , R12 Oil F , R13 Gas F , RTable 1: Minerals and 
uids in
luded in the simplex. y wet 
lay is 
omposedof dry 
lay and 
laybound water. N : non reservoir minerals, M : matrixminerals, F : 
uids, R : reservoir minerals.distributions (notably Gaussian) have support R or R+ and require trun
ationte
hniques to be �tted to the simplex. A more natural alternative is using adistribution that is by itself bound to this spa
e. The Diri
hlet distribution[Ma
Kay, 2003℄ P (~vj�; ~�) / KYj v��j�1j Æ 1� KXi vi! ; (2)is a 
onvenient 
andidate. The two parameters � 2 R+ (shape) and ~� 2 S

K(ve
tor of means) 
an be used to �ne-tune the prior to our liking. (The deltafun
tion | whi
h ensures that the simplex 
onstraint holds | is put here for
larity, but is in fa
t redundant sin
e ~v 2 S
K and will be omitted in the remain-der of this paper.) 4



An example of information we have in
luded in the prior is the porosity. Ageneri
 assumption is that the porosity� : S
K 7! [0; 1℄ � R; � (~v) = '
uids'reservoirhas a uniform a-priori distribution up to the per
olation limit (�P) after whi
hthe probability de
ays rapidly, as shown in �gure 1.
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Figure 1: Porosity prior for �P = 0:4 and � = 0:05; theoreti
al 
urve and oneobtained from sampling.We 
an model this as follows. We 
hoose the Diri
hlet parameters � = #
and �� = 1= (#
#�) where � denotes the mineral group. This leads to thefollowing Diri
hlet distributionP0 (~v) / Y8k2N v 1�#N#Nk Y8j2F v 1�#F#Fj Y8i2M v 1�#M#Mi (3)whi
h indu
es P (�) = U (0; 1) by 
onstru
tion (see appendix A). The per
ola-tion limit is in
luded by multiplying (3) byP (�;�P; �) / ( 1 () � � �Pexp�����P� � () � > �Pwhere parameter � 
ontrols the de
ay strength. The resulting prior isP�P(~v) / P0(~v)P (�(~v);�P ; �) : (4)5



2.2 Observation modelThe other important term in the Bayesian net is the observation model. Thisterm models our belief in the out
ome of the measurements ~m 2 R
Z given thea
tual 
omposition ~v of the reservoir. In other words, given a 
ertain 
omposi-tion this de�nes the probability distribution over the measurement values. Theve
tor ~m 
onsists of measurement out
omesmj , one for ea
h tool. As stated ear-lier, the model assumes that the out
omes of these di�erent tool measurementsare independent given the 
ompositional volume fra
tions ~v, soP (~mj~v) = ZYj=1P (mj j~v) (5)For ea
h of the measurement tools, we assume additive Gaussian distributedmeasurement noise, i.e. we assumemj = fj(~v) + �j : (6)The fun
tions fj : S

K 7! R are the deterministi
 tool values [Spalburg, 2004℄.These are the idealized noiseless measurement out
omes. They are modeledby tool-spe
i�
 mathemati
al fun
tions, whi
h are based on the physi
s of themeasurement tools. These fun
tions are provided by domain experts. A moredetailed des
ription of these fun
tions, however, is beyond the s
ope of thispaper. The noise �j is additive and Gaussian distributed with a tool spe
i�
varian
e �2j . These varian
es are also provided by domain experts. Wherene
essary, a log transform was applied to turn measurements with typi
al log-normal distributed multipli
ative noise into quantities with additive Gaussiannoise. So, the observational probability model 
an be written asP (~mj~v; ~�) / ZYj=1 exp � (mj � fj(~v))22�2j ! : (7)2.3 Bayesian inferen
eThe next step is given a set of observations fmoi g, i 2 Obs, to 
ompute the poste-rior distribution. If we were able to �nd an expression for the eviden
e term, i.e.for the marginal distribution of the observations P (~mo) = R~vQi2Obs P (moi j~v) P (~v) d~vthen the posterior distribution (1) 
ould be written in 
losed form and readilyevaluated. Unfortunately P (~mo) is intra
table and a 
losed-form expressiondoes not exist. In order to obtain the desired 
ompositional estimates we there-fore have to resort to sampling methods.The goal of any sampling pro
edure is to obtain a set of N samples fxig that
ome from a given (but maybe intra
table) distribution �. Using these sampleswe 
an approximate expe
tation values hAi of a fun
tions A(x) a

ording tohAi = ZAx A(x)�(x)dx � 1N NXi=1 A(xi) (8)For instan
e, if we take A(x) = x, the approximation of the mean hxi is thesample mean 1N PNi=1 xi. 6



Name1 GR2 GR-K3 GR-U4 GR-Th5 Density6 Photo-Ele
tri
7 Neutron8 Pulsed Neutron Capture9 NMR-Bound10 NMR-Claybound-water11 NMR-Free12 Flushed Zone Resistivity13 Deep zone Resistivity14 Soni
Table 2: Petrophysi
al Tools Modeled.An important 
lass of sampling methods are the so-
alled Markov ChainMonte Carlo (MCMC) methods [Neil, 1993℄. In MCMC sampling a Markov
hain is de�ned that has an equilibrium distribution �, in su
h a way that(8) gives an good approximation when applied to a suÆ
iently long 
hainx1; x2; : : : ; xN . To make the 
hain independent of the initial state x0, a burn-in period is often taken into a

ount. This means that one ignores the �rstM � N samples that 
ome from intermediate distributions and begins storingthe samples on
e the system has rea
hed the equilibrium distribution �.In our appli
ation we use the hybrid Monte Carlo (HMC) sampling algorithm[Duane et al., 1987℄. HMC is a powerful 
lass of MCMC methods that aredesigned for problems with 
ontinuous state spa
es, su
h as we 
onsider in thispaper. HMC 
an in prin
iple be applied to any noise model with a 
ontinuousprobability density, so there is no restri
tion to Gaussian noise models. HMCuses Hamiltonian dynami
s in 
ombination with a Metropolis [Metropolis et al.,1953℄ a

eptan
e pro
edure to �nd regions of higher probability. This leads to amore eÆ
ient sampler than a sampler that relies on random walk for phase spa
eexploration. HMC also tends to mix more rapidly than the standard MetropolisHastings algorithm.3 SimulationsThe performan
e of the method relies heavily on the quality of the sampler.Therefore we looked at the ability of the system to estimate the 
omposition ofa (syntheti
) reservoir and the ability to reprodu
e the results. For this purpose,we set the 
omposition to a 
ertain value ~v�. We apply the observation modelto generate measurements ~mo. Then we run HMC to obtain samples from theposterior P (~vj~mo). Consisten
y is assessed by 
omparing results of di�erent runsto ea
h other and by 
omparing them with the \ground truth" ~v�. Here, we take7



v�quartz = 0:3, v�wet-
lay = 0:5, v�freewater = 0:12 and v�oil = 0:08 from whi
h wegenerated a set of observations ~mo = �moj	. With ~mo as input, ten simulationswere ran. From the resulting samples the means (�) and (asymmetri
) errorbars (�� �1; �+ �2) are 
omputed for ea
h mineral. These values are drawn in�gure 2 (the 
omposition ~v� is indi
ated by asterisks).
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volume fractionFigure 2: Consisten
y: 10 runs of 131:072 samples ea
h. Burnin 1000 samples.Flat porosity prior. For ea
h run, means (bold dots) and (asymmetri
) error barsof ea
h mineral are plotted. �: values used to generate syntheti
 measurements.Note the large deviation for Quartz.The estimates (�gure 2) based on syntheti
 measurements are within oneerror bar from the a
tual 
omposition, with the ex
eption of quartz. This is
aused by the fa
t that the tools employed are in
apable of distinguishing be-tween quartz and dolomite (and 
al
ite); during sampling states with quartzand dolomite are visited alternatively (�gure 3 top). The resulting distribu-tion is multimodal and is therefore des
ribed poorly by a mean value and errorbars, but better by a distribution. Multimodality suggests that there are otherreservoir 
ompositions that lead to ~mo under the 
urrent error model.Figure 2 also shows that the ten 
hains 
onverge to the same result, (all
hains start at a di�erent random position on the simplex).The addition of observations redu
e the un
ertainty about the 
ompositionof a reservoir. To illustrate this three s
enarios have been sampled. Figure 4shows likely 
ompositions when only the prior knowledge (as given in equation4) is present. This e�e
tively limits possible solutions to 'matrix > 0:6.When an observation for an a
ousti
 measurement is added, the spa
e of likely
on�gurations is redu
ed to in
lude this new information, as shown in �gure 5.8
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Figure 3: Diagrams for quartz and dolomite. Top: time tra
es (10 000 timesteps) showing the mutually ex
lusive behavior, bottom: resulting multimodalprobability distribution. The two peaks indi
ate the two main states, the valley
orresponds to transient behavior between those two states.Figure 6 shows that the in
lusion of a resistivity tool redu
es the spa
e evenfurther.Results of simulations with other values of ~v� (not reported here) 
on�rmthat the sampler generates reprodu
ible results, 
onsistent with the underlying
ompositional ve
tor. In these simulations, we assumed that the observationsmodel to generate measurement data (the generating model) is equal to theobservation model used to apply Bayes' rule (the inferen
e model). We alsoperformed simulations where they are di�erent, in parti
ular in their assumedvarian
e. We found that the sampler is robust to 
ases where the varian
e ofthe generating model is smaller than the varian
e of the inferen
e model. In the
ases where the varian
e of the generating model is bigger, we found that themethod is robust up to di�eren
es of a fa
tor 10. After that we found that thesampler su�ered severely from lo
al minima, leading to irreprodu
ible results.4 De
ision SupportSuppose that we have obtained a subset of measurement out
omes ~mo, yieldinga distribution P (~vj~mo). One may subsequently ask the question whi
h tool tshould be deployed next in order to gain as mu
h information as possible?When asking this question, one is often interested in a spe
i�
 subset of9
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Figure 4: Likely 
ompositions when only the prior is known.minerals and 
uids. Here we assume this interest is a
tually in one spe
i�

omponent u. The question then redu
es to sele
ting the most informativetool(s) t for a given mineral u.We de�ne the informativeness of a tool as the expe
ted de
rease of un
er-tainty in the distribution of vu after obtaining a measurement with that tool.Usually, entropy is taken as a measure for un
ertainty [Ma
Kay, 2003℄, so ameasure of informativeness is the expe
ted entropy of the distribution of vuafter measurement with tool t,hHu;tj~moi � �Z P (mtj~mo) Z P (vujmt; ~mo)� log2 (P (vujmt; ~mo)) dvudmt (9)Note that the information of a tool depends on the earlier measurement resultssin
e the probabilities in (9) are 
onditioned on ~mo.The most informative tool for mineral u is now indenti�ed as that tool t�whi
h yields in expe
tation the lowest entropy in the posterior distribution ofvu: t�uj~mo = argmint hHu;tj~moiIn order to 
ompute the expe
ted 
onditional entropy using HMC sampling10



0.0

0.0

0.0
0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5 0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.01.0

1.0

Waters

M
at

rix
H

ydrocarbons

Figure 5: Likely 
ompositions when the observation of an a
ousti
 tool is in-
luded.methods, we �rst rewrite the expe
ted 
onditional entropy (9) in terms of quan-tities that are 
onditioned only on the measurement out
omes ~mo,hHu;tj~moi = � Z Z P (vu;mtj~mo)� log2 (P (vu;mtj~mo)) dvudmt (10)+ Z P (mtj~mo) Z log2 (P (mtj~mo)) dmtNow the HMC run yields a set V = nvj1; vj2; : : : ; vjKo of 
ompositional samples(
onditioned on ~mo). We augment these by a setM = nmj1 = f1(~vj) + �j1; : : : ;mjZ = fZ(~vj) + �jZoof syntheti
 tool values generated from these samples (whi
h are indexed by j) byapplying equation 6. Subsequently, dis
retized joint probabilities P (vu;mtj~mo)are obtained via a two dimensional binning pro
edure over vu and mt for ea
hof the potential tools t. The binned versions of P (vu;mtj~mo) (and P (mtj~mo))
an be dire
tly used to approximate the expe
ted 
onditional entropy using adis
retized version of equation 10.We illustrate the idea of the de
ision support with the following simulated ex-ample. In this example, we are interested in the most informative tool for the11
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Figure 6: Likely 
ompositions when the observation of a soni
 tool and resistivitytool are in
luded.mineral u = 'oil'. We assume that we have no previous measurements, i.e. weuse the prior distribution. By applying the pro
edure des
ribed above, we �ndthat the most informative tool for oil is `NMR-free' given prior information only.Now the question may be in what sense a typi
al measurement with the`NMR-free' tool di�ers from other 
andidate tools. In the following we there-fore simulate measurements with di�erent tools that are responsive to oil, and
ompare the resulting posteriors, illustrating|with hind-sight|the information
ontent of the di�erent tools. To simulate measurements we �rst draw at ran-dom a mineral 
omposition ~v from the prior. This 
omposition is assumed tobe the ground truth. Next, this 
omposition is used to synthesize observationsmt = ft(~v) + �t for the di�erent tools t , being `Soni
', `NMR-free', `Density'and `Neutron'; the only tools that are dire
tly responsive to oil, and thereforepotentially good 
andidates. Ea
h of these values mt was subsequently used asobservation in a HMC run, resulting in four sample sets. From these sets four
onditional marginals P (voiljmt) were obtained. These are plotted together withthe marginal of the prior P (voil) in �gure 7. In this �gure, we see 
learly thatthe posterior with `NMR-free' di�ers the most from the prior. This suggeststhat the `NMR-free' measurement was (again in hind-sight) indeed the mostinformative measurement. Indeed, it 
an be shown that minus the expe
ted12



0 0.1 0.2 0.3 0.4 0.5 0.6
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

v
oil

P
(v

oi
l)

 

 

Prior
NMR free
Density
Neutron
Sonic

Figure 7: Histograms for voil; without observations (prior), or with one of NMR-free, Soni
, Density or Neutron.entropy after the observation is up to a 
onstant equivalent to the expe
tedKullba
k-Leibler divergen
e between the marginal after the observation and themarginal prior to the observation (see appendix B). In other words, informa-tive tools lead to the posteriors that di�er from the distribution prior to themeasurement.The out
ome of our implementation of the de
ision support tool is a rankingof tools a

ording to the expe
ted entropies of their posterior distributions.In this way, the user 
an sele
t a tool based on a trade-o� between expe
tedinformation and other fa
tors, su
h as deployment 
osts and feasibility.5 Dis
ussionThis resear
h has demonstrated a model and methodology for obtaining 
om-positional estimates given some (or none) observations 
ombined with expertknowledge, and presented a way of sele
ting the most informative tools (amethod of quantifying information to be gained by performing measurements).The ability of the system to estimate 
ompositions is tested using syntheti
data. The estimates are within one error bar (un
ertainty bound) from thea
tual value for unimodal distributions. For multimodal distributions the meanand error bar are poor statisti
s, and more information has to be obtained fromhistograms. Tests also 
on�rmed that the method is 
onsistent, di�erent simula-13



tions result in the approximately the same estimates with only minor di�eren
es.Bayesian models are modular and therefore easily extended. Obvious extensionsare other tools (and/or other noise models), and an extension of the number ofminerals and 
uids. A more elaborate extensions is to in
lude observations frommultiple (adja
ent) depths. The model then estimates a 
omposition for ea
hdepth, and these 
ompositions are sto
hasti
ally linked via a lithology model.This 
hanges the reservoir from the 
urrent homogeneous (aside from invasivee�e
ts in radial dire
tion) des
ription to an inhomogeneous one, with the ad-vantage of in
luding more information, and thereby generating more reliableresults, but modeling lithology (transitions) might prove to be a 
hallenge.Another possible addition is the possibility to retrieve priors from a database.These might be sets of lo
ation spe
i�
 shapes and means for the 
urrent Diri
h-let prior, but might also be of 
ompletely di�erent shape (even multimodal toa

ount for mixtures). The 
urrent Diri
hlet does not model mutually ex
lu-sive states (layered stru
tures su
h as shales). A solution might be to modelthe prior as having multiple modes where ea
h mode has a di�erent set of 
u-ids or minerals. For example the non-reservoir mode 
onsisting of shale and
oal (whi
h behave in an ex
lusive fashion) and a reservoir mode 
onsisting ofDiri
hlet distributed reservoir minerals and 
uids. This 
ould be sampled usingreversible jump MCMC [Green, 1995℄. It remains to be seen if this in
reasedexplanatory power of the model outweighs the modeling e�ort.Regarding the representation of the results, an improvement might be toemploy some form of automati
 
lustering algorithm to identify the modes ofthe distribution in order to report better des
riptive statisti
s (as the varian
eand mean are poor 
hara
teristi
s for multimodal distributions).Shell E&P are planning to use the developed methodology and software toin
rease un
ertainty awareness among their petrophysi
ists. This un
ertaintyis inherent to log evaluation and must be dealt with in a 
onsistent manner.Other uses are to assist in the evaluation of (ambiguous) reservoir logs so thatevaluation un
ertainties be
ome visible and to enable petrophysi
ists to inves-tigate options to redu
e these un
ertainties in order to redu
e the number offaulty log evaluations.A
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 A�airs,grant BSIK03024.A Porosity PriorA usual requirement is that the porosity has a 
at prior distribution. Porosityis a ratio of the form � = XX+Y . Obviously 0 � X;Y � 1 sin
e both aresummations over a subset of S
K . If we 
hoose parameters appropriately (uw +puw2 � 1) then by approximation X � � (u1; w) and Y � � (u2; w). Thisensures � � Beta (u1; u2). The gamma distribution is given by�(xju;w) � 1Z (u;w)xu�1 exp�� xw�14



for x; u; w 2 R
+, and the beta distribution is given byBeta (�ju1; u2) � 1Z (u1; u2)�u1�1 (1� �)u2�1for � 2 [0; 1℄ u1; u2 2 R

+. If we require � � U (0; 1) then it suÆ
es to setu1 = u2 = 1, leading to X;Y � � (�j1; w). Both X and Y are of the formPJj vj . If we assume vi ?? vj () i 6= j, then vj � � � 1J ; w� ensuresthe right distribution of X;Y . Parameter w is free to 
hoose (within boundsdes
ribed above) sin
e it drops out in the normalization pro
edure; howeverusing w = 1=#groups ensures that the means sum to unity. The prior over~v 2 S
K yields P (~v) / NYn=1 v 1�NNn FYj=1 v 1�FFj+N MYi=1 v 1�MMi+N+F (11)where the produ
ts are over non-reservoir minerals (N), 
uids (F) and ma-trix (M) minerals respe
tively. Although it is not ne
essary to model the non-reservoir minerals as � distributed (sin
e these do not a�e
t the value of theporosity), doing so ensures that the exp's drop out. The joint probability (11)is a Diri
hlet distribution with parameters �j = 1=(GE) and shape � = G,where E 2 U = fN;F;Mg n f0g and G the number of mineral groups (e.g. the
ardinality of U).B KL Divergen
eThe Kullba
k-Leibler divergen
e (KL divergen
e) is a measure of di�eren
e be-tween two probability distributions [Ma
Kay, 2003℄.D (P(x)kQ(x)) � Z P(x) log�P(x)Q(x)� dxFor example, the KL divergen
e between 
onditional marginal P (vujmt) andprior P (vu) is given byDut(mt) = D (P (vujmt) kP (vu))The expe
ted KL divergen
e is given byhDuti � Z P (mt)Dut(mt)dmtwhi
h is equal to Hu � hHuti, where Hu = � R P (vu) log(P (vu))dvu denotesthe entropy of the prior, and hHuti is de�ned by equation 9. Be
ause Hu isindependent of t, the following identity must holdargmint hHuti = argmaxt hDutiReferen
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