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Abstract

The exploration for oil and gas requires real-time petrophysical exper-
tise to interpret measurement data acquired in boreholes and to recom-
mend further steps. High time pressure and the far reaching nature of
these decisions, as well as the limited opportunity to gain in depth petro-
physical experience suggests that a decision support system that can aid
the petrophysicist will be very useful.

In this paper we describe a Bayesian approach for obtaining compo-
sitional estimates that combines expert knowledge with information ob-
tained from measurements. We define a prior model for the compositional
volume fractions and observation models for each of the measurement
tools. Both prior and observation models are based on domain expertise.
These models are combined in a joint probability model. To deal with the
nonlinearities in the model, Bayesian inference is implemented by using
the hybrid Monte Carlo algorithm.

In the system, tool measurement values can entered and the posterior
probability distribution of the compositional fractions can be obtained
by applying Bayes’ rule. Bayesian inference is also used for optimal tool
selection, using conditional entropy to select the most informative tool to
obtain better estimates of the reservoir.

Reliability and consistency of the method is demonstrated by inference
on synthetically generated data.

1 Introduction

Oil and gas reservoirs are located in the earth’s crust at depths of several kilo-
meters, and when located offshore, in water depths of a few meters to a few
kilometers. Consequently, the gathering of critical information such as the pres-
ence and type of hydrocarbons, size of the reservoir and the physical properties
of the reservoir such as the porosity of the rock and the permeability is a key
activity in the oil and gas industry.
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Pre-development methods to gather information on the nature of the reser-
voirs range from gravimetric, 2D and 3D seismic to the drilling of exploration
and appraisal boreholes. Additional information is obtained while a field is
developed through data acquisition in new development wells drilled to pro-
duce hydrocarbons, time-lapse seismic surveys and inwell monitoring of how
the actual production of hydrocarbons affects physical properties such as the
pressure and temperature. The purpose of information gathering is to decide
which reservoirs can be developed economically, and how to adapt the means of
development best to the particular nature of a reservoir.

The early measurements acquired in exploration, appraisal and development
boreholes are a crucial component of the information gathering process. These
measurements are typically obtained from tools that can be included in the
borehole drilling equipment or from open/cased hole logging. The range of
possible measurements varies depending on the type of logging. Some options,
such as coring, are very expensive and may even risk other data acquisition
options. In general acquiring all possible data imposes too great an economic
burden on the exploration, appraisal and development. Hence data acquisition
options must be exercised carefully bearing in mind the learnings of already
acquired data and general hydrocarbon field knowledge. Also important is a
clear understanding of what data can and cannot be acquired later and the
consequences of having an incorrect understanding of the nature of a reservoir
on the effectiveness of its development.

Making the right data acquisition decisions, as well as the best interpreta-
tion of information obtained in boreholes forms one of the principle tasks of
petrophysicists. The efficiency of a petrophysicsist executing her/his task is
substantially influenced by the ability to gauge her/his experience to the issues
at hand. Efficiency is hampered when a petrophysicists experience level is not
yet fully sufficient and by the rather common circumstance that decisions to
acquire particular types of information or not must be made in a rush, at high
costs and shortly after receiving other information that impact on that very
same decision. Mistakes are not entirely uncommon and almost always painful.
In cases, non essential data is obtained at the expense of extremely high cost,
or essential data is not obtained at all; causing development mistakes that can
jeopardize the amount of hydrocarbon recoverable from a reservoir and induce
significant cost increases.

The overall effectiveness of petrophysicists is expected to improve in case
a Bayesian net [Pearl, 1988] constructed and populated with petrophysical re-
lationships and knowledge is available and can be used as a decision support
system (DSS). In practice a DSS can increase the petrophysicists awareness of
low probability but high impact cases and alleviate some of the operational
decision pressure. In the longer run regularly updated DSSs may serve to cap-
ture and disseminate petrophysical experience and knowledge while also other
petroleum engineering experts such as geologists, and reservoir engineers may
start to use a Bayesian DSS for their purposes.

In this paper we describe a Bayesian net for the estimation of compositional
volume fractions in a reservoir on the basis of logging data. It is an extension
of the work described in Spalburg [2004].

The paper is organized as follows. In section 2 we describe the ideas of prob-
abilistic modeling and Bayesian inference for the estimation of compositional
volume fractions on the basis of measurements. In its subsections we will de-



scribe the model and the inference steps via a hybrid Monte Carlo sampler in
more detail. Some experiments using synthetic data illustrating the Bayesian
inference method are described in section 3. In section 4, we describe how the
sampling method can be used to decide on the most informative next measure-
ments. In section 3, we assess the reliability and consistency of the method by
inference on synthetically generated data, and we end with a discussion and
conclusions in section 5.

2 Probabilistic modeling

The primary aim of the model is to estimate the compositional volume fractions
of a reservoir on the basis of borehole measurements. Due to incomplete knowl-
edge, limited amount of measurements and noise in the measurements, there
will be uncertainty in the volume fractions. We will use Bayesian probability
theory to deal with this uncertainty.

The starting point is a model for the probability distribution P (7,) of
the compositional volume fractions ¥ and borehole measurements m. A causal
argument “The composition is given by the (unknown) volume fractions, and
the volume fractions determine the distribution measurement outcomes of each
of the tools” leads us to a Bayesian net formulation of the probabilistic model,

Z
P (#,m) = [[ P (mi[0) P (9) .

i=1

In this model, P (¥) is the so-called prior, the prior probability distribution of
volume fractions before having seen any data. In principle, the prior encodes
the generic geological and petrophysical knowledge and beliefs [Spalburg, 2004].
The factor lezl P (m;|v) is the observation model. The observation model re-
lates volume fractions ¥ to measurement outcomes m; of each of the Z tools
1. The observation model assumes that given the underlying volume fractions,
measurement outcomes of the different tools are independent. Each term in the
observation model gives the probability density of observing outcome m; for tool
1 given that the composition is ¥. Now given a set of measurement outcomes
m° of a subset Obs of tools, the probability distribution of the volume fractions
can be updated in a principled way by applying Bayes’ rule,

[Tic obs P (m7]0) P (9)

P (7]m°) = B () : (1)

The updated distribution is called the posterior distribution. The constant in
the denominator P (11°) = [ ],z op, P (m?|0) P (7) d7 is called the evidence.

The remainder of this section describes the prior and observation model, as
well as the sampling method that we used to obtain the posterior.

2.1 Prior

The model assumes that the reservoir at the given depth is composed of K
given minerals and fluids. The volume fraction of mineral j is assumed to have
a definite but unknown value v; which is between 0 and 1. The model assumes
that the K given minerals and fluids occupy the whole volume of the composite,



Z]K:l v, = 1. In other words, the vector of volume fractions ' is constrained to
the K-part simplex, defined by S¥ = {17 € Rfﬂ Zfil v; = 1}, where R is the
space of reals > 0 (for the closed simplex 0 < v; < 1, but to ensure that the
division operator is defined everywhere we use the open simplex 0 < v; < 1).
As a shorthand notation, we will use the symbol ¢ to denote a summation over
a set of compositional parts; ¢ : S& — [0, 1] C R, defined by ¢, (¥) = D viex Vis
where y denotes the set of minerals and fluids to include in the summation.

The fluids and minerals (see table 1) are clustered into three basic geological
groups: the non-reservoir minerals A/, matrix minerals M and fluid minerals
F. The number of minerals in each group is indicated by the symbol #. The
number of distinct groups in the simplex is #Q = © (#N) + O (#M) + 0O (#£F),
where © : Z — {0,1};0 (n) =1 <= n > 0. The model allows to decrease
the number of minerals and fluids K by excluding these from the prior. In such
case, a mineral group can be completely absent. Most commonly applied prior

Name Groups

Shale N
Coal
Quartz
Dolomite
Calcite
Clay (wet)f
Halite
Pyrite
Siderite
Bound-water
11 Free-water

12 0il
13 Gas
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Table 1: Minerals and fluids included in the simplex. T wet clay is composed
of dry clay and claybound water. A : non reservoir minerals, M : matrix
minerals, F : fluids, R : reservoir minerals.

distributions (notably Gaussian) have support R or Ry and require truncation
techniques to be fitted to the simplex. A more natural alternative is using a
distribution that is by itself bound to this space. The Dirichlet distribution
[MacKay, 2003]

K K
P@MJDKII@W‘%<1—§:W>, (2)
i i

is a convenient candidate. The two parameters o € R, (shape) and ji € S¥
(vector of means) can be used to fine-tune the prior to our liking. (The delta
function — which ensures that the simplex constraint holds — is put here for
clarity, but is in fact redundant since o € S¥ and will be omitted in the remain-
der of this paper.)



An example of information we have included in the prior is the porosity. A

generic assumption is that the porosity
$:SK 5 [0,1] CR; ¢ (d) = —ouids

Preservoir

has a uniform a-priori distribution up to the percolation limit (¢p) after which
the probability decays rapidly, as shown in figure 1.
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Figure 1: Porosity prior for ¢p = 0.4 and 7 = 0.05; theoretical curve and one
obtained from sampling.

We can model this as follows. We choose the Dirichlet parameters o = #Q
and p, = 1/ (#Q#k) where k denotes the mineral group. This leads to the
following Dirichlet distribution

1-#N 1_#F 1_#M
Py (V) H Uk#:: H v]-# H v; (3)
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which induces P (¢) = ¢ (0,1) by construction (see appendix A). The percola-
tion limit is included by multiplying (3) by

1 = ¢<¢p

P(¢; -
(¢,¢P,T)OC { exp (_d)Td)P) — ¢>¢P
where parameter 7 controls the decay strength. The resulting prior is

Py () o< Po(0) P(6(); p, 7) - (4)



2.2 Observation model

The other important term in the Bayesian net is the observation model. This
term models our belief in the outcome of the measurements m € R? given the
actual composition ¢’ of the reservoir. In other words, given a certain composi-
tion this defines the probability distribution over the measurement values. The
vector 17 consists of measurement outcomes m;, one for each tool. As stated ear-
lier, the model assumes that the outcomes of these different tool measurements
are independent given the compositional volume fractions ¥, so

z
P(m|?) =H (m;]0) (5)

For each of the measurement tools, we assume additive Gaussian distributed
measurement noise, i.e. we assume

= 1@ +¢& - (6)

The functions f; : S + R are the deterministic tool values [Spalburg, 2004].
These are the idealized noiseless measurement outcomes. They are modeled
by tool-specific mathematical functions, which are based on the physics of the
measurement tools. These functions are provided by domain experts. A more
detailed description of these functions, however, is beyond the scope of this
paper. The noise ¢; is additive and Gaussian distributed with a tool specific
variance af. These variances are also provided by domain experts. Where
necessary, a log transform was applied to turn measurements with typical log-
normal distributed multiplicative noise into quantities with additive Gaussian

noise. So, the observational probability model can be written as

Z —\\2
P (17,5) o [[ exp &%) . (7)

2.3 Bayesian inference

The next step is given a set of observations {m?}, i € Obs, to compute the poste-
rior distribution. If we were able to find an expression for the evidence term, i.e.
for the marginal distribution of the observations P (m1°) = [ [T,cops P (m?|7) P (0) d7
then the posterior distribution (1) could be wrltten in closed form and readily
evaluated. Unfortunately P (m°) is intractable and a closed-form expression
does not exist. In order to obtain the desired compositional estimates we there-
fore have to resort to sampling methods.

The goal of any sampling procedure is to obtain a set of N samples {z;} that
come from a given (but maybe intractable) distribution 7. Using these samples
we can approximate expectation values (A) of a functions A(z) according to

= [ Aw NZA ) ®)

For instance, if we take A(z) = z, the approximation of the mean (z) is the
sample mean 4 Zi\il z;.



Name

GR

GR-K

GR-U

GR-Th

Density

Photo-Electric

Neutron

Pulsed Neutron Capture
NMR-Bound

10 NMR-Claybound-water
11  NMR-Free

12 Flushed Zone Resistivity
13 Deep zone Resistivity
14 Sonic
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Table 2: Petrophysical Tools Modeled.

An important class of sampling methods are the so-called Markov Chain
Monte Carlo (MCMC) methods [Neil, 1993]. ITn MCMC sampling a Markov
chain is defined that has an equilibrium distribution 7, in such a way that
(8) gives an good approximation when applied to a sufficiently long chain
Z1,%2,...,TNy. To make the chain independent of the initial state zg, a burn-
in period is often taken into account. This means that one ignores the first
M < N samples that come from intermediate distributions and begins storing
the samples once the system has reached the equilibrium distribution 7.

In our application we use the hybrid Monte Carlo (HMC) sampling algorithm
[Duane et al., 1987]. HMC is a powerful class of MCMC methods that are
designed for problems with continuous state spaces, such as we consider in this
paper. HMC can in principle be applied to any noise model with a continuous
probability density, so there is no restriction to Gaussian noise models. HMC
uses Hamiltonian dynamics in combination with a Metropolis [Metropolis et al.,
1953] acceptance procedure to find regions of higher probability. This leads to a
more efficient sampler than a sampler that relies on random walk for phase space
exploration. HMC also tends to mix more rapidly than the standard Metropolis
Hastings algorithm.

3 Simulations

The performance of the method relies heavily on the quality of the sampler.
Therefore we looked at the ability of the system to estimate the composition of
a (synthetic) reservoir and the ability to reproduce the results. For this purpose,
we set the composition to a certain value o*. We apply the observation model
to generate measurements m°. Then we run HMC to obtain samples from the
posterior P(7]|mi°). Consistency is assessed by comparing results of different runs
to each other and by comparing them with the “ground truth” o*. Here, we take



V) = 0.3, v} = 0.5, V. powater = 0-12 and v’; = 0.08 from which we

*
quartz wet-clay

generated a set of observations m°® = {m;’} With mi° as input, ten simulations
were ran. From the resulting samples the means () and (asymmetric) error
bars (u — o1, p + 02) are computed for each mineral. These values are drawn in
figure 2 (the composition 7™ is indicated by asterisks).

T T T T T

Gas ¥ 1

Oil E " 1

Freewater | =K 1
Boundwater &= 1
Siderite ap‘-_' :

Pyrite ¥ 1

Halite ¥ 1
Clayboundwater ¥ 1
Clay =9k -

Dolomite z 1
Quartz < ¥ 1

Shale 9F=. 1

0 0.1 0.2 0.3 0.4 0.5
volume fraction

Figure 2: Consistency: 10 runs of 131.072 samples each. Burnin 1000 samples.
Flat porosity prior. For each run, means (bold dots) and (asymmetric) error bars
of each mineral are plotted. : values used to generate synthetic measurements.
Note the large deviation for Quartz.

The estimates (figure 2) based on synthetic measurements are within one
error bar from the actual composition, with the exception of quartz. This is
caused by the fact that the tools employed are incapable of distinguishing be-
tween quartz and dolomite (and calcite); during sampling states with quartz
and dolomite are visited alternatively (figure 3 top). The resulting distribu-
tion is multimodal and is therefore described poorly by a mean value and error
bars, but better by a distribution. Multimodality suggests that there are other
reservoir compositions that lead to 7m° under the current error model.

Figure 2 also shows that the ten chains converge to the same result, (all
chains start at a different random position on the simplex).

The addition of observations reduce the uncertainty about the composition
of a reservoir. To illustrate this three scenarios have been sampled. Figure 4
shows likely compositions when only the prior knowledge (as given in equation
4) is present. This effectively limits possible solutions t0 @matrix > 0.6.
When an observation for an acoustic measurement is added, the space of likely
configurations is reduced to include this new information, as shown in figure 5.
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Figure 3: Diagrams for quartz and dolomite. Top: time traces (10 000 time
steps) showing the mutually exclusive behavior, bottom: resulting multimodal
probability distribution. The two peaks indicate the two main states, the valley
corresponds to transient behavior between those two states.

Figure 6 shows that the inclusion of a resistivity tool reduces the space even
further.

Results of simulations with other values of ¥* (not reported here) confirm
that the sampler generates reproducible results, consistent with the underlying
compositional vector. In these simulations, we assumed that the observations
model to generate measurement data (the generating model) is equal to the
observation model used to apply Bayes’ rule (the inference model). We also
performed simulations where they are different, in particular in their assumed
variance. We found that the sampler is robust to cases where the variance of
the generating model is smaller than the variance of the inference model. In the
cases where the variance of the generating model is bigger, we found that the
method is robust up to differences of a factor 10. After that we found that the
sampler suffered severely from local minima, leading to irreproducible results.

4 Decision Support

Suppose that we have obtained a subset of measurement outcomes m?°, yielding

a distribution P (7|m°). One may subsequently ask the question which tool ¢

should be deployed next in order to gain as much information as possible?
When asking this question, one is often interested in a specific subset of
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Figure 4: Likely compositions when only the prior is known.

minerals and fluids. Here we assume this interest is actually in one specific
component u. The question then reduces to selecting the most informative
tool(s) ¢ for a given mineral u.

We define the informativeness of a tool as the expected decrease of uncer-
tainty in the distribution of v, after obtaining a measurement with that tool.
Usually, entropy is taken as a measure for uncertainty [MacKay, 2003], so a
measure of informativeness is the expected entropy of the distribution of v,
after measurement with tool ¢,

Wiy = = [ P (maii®) [ P (ol i)

x log, (P (vu|mta mo)) dv, dm;

9)

Note that the information of a tool depends on the earlier measurement results
since the probabilities in (9) are conditioned on m:°.

The most informative tool for mineral u is now indentified as that tool ¢*
which yields in expectation the lowest entropy in the posterior distribution of
Uyt

t = argmin (H,, +|m°)
t

*
u|me

In order to compute the expected conditional entropy using HMC sampling

10
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Figure 5: Likely compositions when the observation of an acoustic tool is in-
cluded.

methods, we first rewrite the expected conditional entropy (9) in terms of quan-
tities that are conditioned only on the measurement outcomes m2,

)
< ut|m // ’Uu mt|m

x logy (P (vy, m¢|m?)) dv,dmy (10)
+ /P(mt|ﬁi°)/log2 (P (m¢|m®)) dmy

Now the HMC run yields a set V' = {vl,vé, . vK} of compositional samples

(conditioned on 11°). We augment these by a set M = {m{ = @)+ €&, ,ml = fz2(7) + f%}
of synthetic tool values generated from these samples (which are indexed by 7) by

applying equation 6. Subsequently, discretized joint probabilities P (v,,, m:|m°)

are obtained via a two dimensional binning procedure over v,, and m; for each

of the potential tools ¢. The binned versions of P (v, m:|m?) (and P (m;|m?°))

can be directly used to approximate the expected conditional entropy using a

discretized version of equation 10.

We illustrate the idea of the decision support with the following simulated ex-

ample. In this example, we are interested in the most informative tool for the

11
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Figure 6: Likely compositions when the observation of a sonic tool and resistivity
tool are included.

mineral u = ’0il’. We assume that we have no previous measurements, i.e. we
use the prior distribution. By applying the procedure described above, we find
that the most informative tool for oil is ‘NMR-free’ given prior information only.

Now the question may be in what sense a typical measurement with the
‘NMR-free’ tool differs from other candidate tools. In the following we there-
fore simulate measurements with different tools that are responsive to oil, and
compare the resulting posteriors, illustrating—with hind-sight—the information
content of the different tools. To simulate measurements we first draw at ran-
dom a mineral composition ¢ from the prior. This composition is assumed to
be the ground truth. Next, this composition is used to synthesize observations
my = f1(0) + & for the different tools ¢ , being ‘Sonic’, ‘NMR-free’, ‘Density’
and ‘Neutron’; the only tools that are directly responsive to oil, and therefore
potentially good candidates. Each of these values m; was subsequently used as
observation in a HMC run, resulting in four sample sets. From these sets four
conditional marginals P (vo;1|m:) were obtained. These are plotted together with
the marginal of the prior P (vy;) in figure 7. In this figure, we see clearly that
the posterior with ‘NMR-free’ differs the most from the prior. This suggests
that the ‘NMR-free’ measurement was (again in hind-sight) indeed the most
informative measurement. Indeed, it can be shown that minus the expected

12
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Figure 7: Histograms for v,;; without observations (prior), or with one of NMR-
free, Sonic, Density or Neutron.

entropy after the observation is up to a constant equivalent to the expected
Kullback-Leibler divergence between the marginal after the observation and the
marginal prior to the observation (see appendix B). In other words, informa-
tive tools lead to the posteriors that differ from the distribution prior to the
measurement.

The outcome of our implementation of the decision support tool is a ranking
of tools according to the expected entropies of their posterior distributions.
In this way, the user can select a tool based on a trade-off between expected
information and other factors, such as deployment costs and feasibility.

5 Discussion

This research has demonstrated a model and methodology for obtaining com-
positional estimates given some (or none) observations combined with expert
knowledge, and presented a way of selecting the most informative tools (a
method of quantifying information to be gained by performing measurements).
The ability of the system to estimate compositions is tested using synthetic
data. The estimates are within one error bar (uncertainty bound) from the
actual value for unimodal distributions. For multimodal distributions the mean
and error bar are poor statistics, and more information has to be obtained from
histograms. Tests also confirmed that the method is consistent, different simula-

13



tions result in the approximately the same estimates with only minor differences.
Bayesian models are modular and therefore easily extended. Obvious extensions
are other tools (and/or other noise models), and an extension of the number of
minerals and fluids. A more elaborate extensions is to include observations from
multiple (adjacent) depths. The model then estimates a composition for each
depth, and these compositions are stochastically linked via a lithology model.
This changes the reservoir from the current homogeneous (aside from invasive
effects in radial direction) description to an inhomogeneous one, with the ad-
vantage of including more information, and thereby generating more reliable
results, but modeling lithology (transitions) might prove to be a challenge.

Another possible addition is the possibility to retrieve priors from a database.
These might be sets of location specific shapes and means for the current Dirich-
let prior, but might also be of completely different shape (even multimodal to
account for mixtures). The current Dirichlet does not model mutually exclu-
sive states (layered structures such as shales). A solution might be to model
the prior as having multiple modes where each mode has a different set of flu-
ids or minerals. For example the non-reservoir mode consisting of shale and
coal (which behave in an exclusive fashion) and a reservoir mode consisting of
Dirichlet distributed reservoir minerals and fluids. This could be sampled using
reversible jump MCMC [Green, 1995]. It remains to be seen if this increased
explanatory power of the model outweighs the modeling effort.

Regarding the representation of the results, an improvement might be to
employ some form of automatic clustering algorithm to identify the modes of
the distribution in order to report better descriptive statistics (as the variance
and mean are poor characteristics for multimodal distributions).

Shell E&P are planning to use the developed methodology and software to
increase uncertainty awareness among their petrophysicists. This uncertainty
is inherent to log evaluation and must be dealt with in a consistent manner.
Other uses are to assist in the evaluation of (ambiguous) reservoir logs so that
evaluation uncertainties become visible and to enable petrophysicists to inves-
tigate options to reduce these uncertainties in order to reduce the number of
faulty log evaluations.
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A Porosity Prior

A usual requirement is that the porosity has a flat prior distribution. Porosity
is a ratio of the form ¢ = XL-H/ Obviously 0 < X,Y < 1 since both are
summations over a subset of S¥. If we choose parameters appropriately (uw +
Vuw? < 1) then by approximation X ~ T (u1,w) and Y ~ T (ug,w). This

ensures ¢ ~ Beta (uj,u2). The gamma distribution is given by

1 —— z
F(CC|U,’U)) = mm ! exp (—E)

14



for z,u,w € R*, and the beta distribution is given by

Beta (¢|u1,us) = L gmta o gyt
’ Z (ul, UQ)
for ¢ € [0,1] wuy,us € RT. If we require ¢ ~ ¢ (0,1) then it suffices to set
u; = us = 1, leading to X,Y ~ I'(:|1,w). Both X and Y are of the form
Z}] vj. If we assume v; 1L v; <<= i # j, then v; ~ F(%,w) ensures
the right distribution of X,Y. Parameter w is free to choose (within bounds
described above) since it drops out in the normalization procedure; however
using w = 1/#tgroups ensures that the means sum to unity. The prior over
7 € SK yields

N F M
. 1N 1_F 1-M
P (¥) H vn H VN H Vi 'N4F (11)
n=1 j=1 i=1

where the products are over non-reservoir minerals (N), fluids (F) and ma-
trix (M) minerals respectively. Although it is not necessary to model the non-
reservoir minerals as I' distributed (since these do not affect the value of the
porosity), doing so ensures that the exp’s drop out. The joint probability (11)
is a Dirichlet distribution with parameters p; = 1/(GE) and shape o = G,
where E € U = {N,F,M} \ {0} and G the number of mineral groups (e.g. the
cardinality of U).

B KL Divergence

The Kullback-Leibler divergence (KL divergence) is a measure of difference be-
tween two probability distributions [MacKay, 2003].

D (P = [ Plios (G ) ds

For example, the KL divergence between conditional marginal P (v,|m;) and
prior P (v,) is given by

Das(rmi) = D (P (wulme) [P (v.)
The expected KL divergence is given by
<Dut> = /P (mt) Dut(mt)dmt
which is equal to H, — (Hy:), where H, = — [P (v,) log(P (v,))dv, denotes

the entropy of the prior, and (H,;) is defined by equation 9. Because H, is
independent of ¢, the following identity must hold

argmin (H,;) = argmax (D)
¢ ¢
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