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Pre-development methods to gather information on the nature of the reser-voirs range from gravimetri, 2D and 3D seismi to the drilling of explorationand appraisal boreholes. Additional information is obtained while a �eld isdeveloped through data aquisition in new development wells drilled to pro-due hydroarbons, time-lapse seismi surveys and inwell monitoring of howthe atual prodution of hydroarbons a�ets physial properties suh as thepressure and temperature. The purpose of information gathering is to deidewhih reservoirs an be developed eonomially, and how to adapt the means ofdevelopment best to the partiular nature of a reservoir.The early measurements aquired in exploration, appraisal and developmentboreholes are a ruial omponent of the information gathering proess. Thesemeasurements are typially obtained from tools that an be inluded in theborehole drilling equipment or from open/ased hole logging. The range ofpossible measurements varies depending on the type of logging. Some options,suh as oring, are very expensive and may even risk other data aquisitionoptions. In general aquiring all possible data imposes too great an eonomiburden on the exploration, appraisal and development. Hene data aquisitionoptions must be exerised arefully bearing in mind the learnings of alreadyaquired data and general hydroarbon �eld knowledge. Also important is alear understanding of what data an and annot be aquired later and theonsequenes of having an inorret understanding of the nature of a reservoiron the e�etiveness of its development.Making the right data aquisition deisions, as well as the best interpreta-tion of information obtained in boreholes forms one of the priniple tasks ofpetrophysiists. The eÆieny of a petrophysisist exeuting her/his task issubstantially inuened by the ability to gauge her/his experiene to the issuesat hand. EÆieny is hampered when a petrophysiists experiene level is notyet fully suÆient and by the rather ommon irumstane that deisions toaquire partiular types of information or not must be made in a rush, at highosts and shortly after reeiving other information that impat on that verysame deision. Mistakes are not entirely unommon and almost always painful.In ases, non essential data is obtained at the expense of extremely high ost,or essential data is not obtained at all; ausing development mistakes that anjeopardize the amount of hydroarbon reoverable from a reservoir and induesigni�ant ost inreases.The overall e�etiveness of petrophysiists is expeted to improve in asea Bayesian net [Pearl, 1988℄ onstruted and populated with petrophysial re-lationships and knowledge is available and an be used as a deision supportsystem (DSS). In pratie a DSS an inrease the petrophysiists awareness oflow probability but high impat ases and alleviate some of the operationaldeision pressure. In the longer run regularly updated DSSs may serve to ap-ture and disseminate petrophysial experiene and knowledge while also otherpetroleum engineering experts suh as geologists, and reservoir engineers maystart to use a Bayesian DSS for their purposes.In this paper we desribe a Bayesian net for the estimation of ompositionalvolume frations in a reservoir on the basis of logging data. It is an extensionof the work desribed in Spalburg [2004℄.The paper is organized as follows. In setion 2 we desribe the ideas of prob-abilisti modeling and Bayesian inferene for the estimation of ompositionalvolume frations on the basis of measurements. In its subsetions we will de-2



sribe the model and the inferene steps via a hybrid Monte Carlo sampler inmore detail. Some experiments using syntheti data illustrating the Bayesianinferene method are desribed in setion 3. In setion 4, we desribe how thesampling method an be used to deide on the most informative next measure-ments. In setion 3, we assess the reliability and onsisteny of the method byinferene on synthetially generated data, and we end with a disussion andonlusions in setion 5.2 Probabilisti modelingThe primary aim of the model is to estimate the ompositional volume frationsof a reservoir on the basis of borehole measurements. Due to inomplete knowl-edge, limited amount of measurements and noise in the measurements, therewill be unertainty in the volume frations. We will use Bayesian probabilitytheory to deal with this unertainty.The starting point is a model for the probability distribution P (~v; ~m) ofthe ompositional volume frations ~v and borehole measurements ~m. A ausalargument \The omposition is given by the (unknown) volume frations, andthe volume frations determine the distribution measurement outomes of eahof the tools" leads us to a Bayesian net formulation of the probabilisti model,P (~v; ~m) = ZYi=1P (mij~v) P (~v) :In this model, P (~v) is the so-alled prior, the prior probability distribution ofvolume frations before having seen any data. In priniple, the prior enodesthe generi geologial and petrophysial knowledge and beliefs [Spalburg, 2004℄.The fator QZi=1 P (mij~v) is the observation model. The observation model re-lates volume frations ~v to measurement outomes mi of eah of the Z toolsi. The observation model assumes that given the underlying volume frations,measurement outomes of the di�erent tools are independent. Eah term in theobservation model gives the probability density of observing outomemi for tooli given that the omposition is ~v. Now given a set of measurement outomes~mo of a subset Obs of tools, the probability distribution of the volume frationsan be updated in a prinipled way by applying Bayes' rule,P (~vj~mo) = Qi2Obs P (moi j~v) P (~v)P (~mo) : (1)The updated distribution is alled the posterior distribution. The onstant inthe denominator P (~mo) = R~vQi2Obs P (moi j~v) P (~v) d~v is alled the evidene.The remainder of this setion desribes the prior and observation model, aswell as the sampling method that we used to obtain the posterior.2.1 PriorThe model assumes that the reservoir at the given depth is omposed of Kgiven minerals and uids. The volume fration of mineral j is assumed to havea de�nite but unknown value vj whih is between 0 and 1. The model assumesthat the K given minerals and uids oupy the whole volume of the omposite,3



PKj=1 vk = 1. In other words, the vetor of volume frations ~v is onstrained tothe K-part simplex, de�ned by S
K � n~v 2 R

K+ ��PKj=1 vj = 1o, where R+ is thespae of reals > 0 (for the losed simplex 0 � vj � 1, but to ensure that thedivision operator is de�ned everywhere we use the open simplex 0 < vj < 1).As a shorthand notation, we will use the symbol ' to denote a summation overa set of ompositional parts; ' : S
K 7! [0; 1℄ � R, de�ned by '� (~v) =P8j2� vj ,where � denotes the set of minerals and uids to inlude in the summation.The uids and minerals (see table 1) are lustered into three basi geologialgroups: the non-reservoir minerals N , matrix minerals M and uid mineralsF . The number of minerals in eah group is indiated by the symbol #. Thenumber of distint groups in the simplex is #
 = �(#N )+� (#M)+� (#F),where � : Z 7! f0; 1g ; � (n) = 1 () n > 0. The model allows to dereasethe number of minerals and uids K by exluding these from the prior. In suhase, a mineral group an be ompletely absent. Most ommonly applied priorName Groups1 Shale N2 Coal N3 Quartz M , R4 Dolomite M , R5 Calite M , R6 Clay (wet)y M , R7 Halite M , R8 Pyrite M , R9 Siderite M , R10 Bound-water F , R11 Free-water F , R12 Oil F , R13 Gas F , RTable 1: Minerals and uids inluded in the simplex. y wet lay is omposedof dry lay and laybound water. N : non reservoir minerals, M : matrixminerals, F : uids, R : reservoir minerals.distributions (notably Gaussian) have support R or R+ and require trunationtehniques to be �tted to the simplex. A more natural alternative is using adistribution that is by itself bound to this spae. The Dirihlet distribution[MaKay, 2003℄ P (~vj�; ~�) / KYj v��j�1j Æ 1� KXi vi! ; (2)is a onvenient andidate. The two parameters � 2 R+ (shape) and ~� 2 S

K(vetor of means) an be used to �ne-tune the prior to our liking. (The deltafuntion | whih ensures that the simplex onstraint holds | is put here forlarity, but is in fat redundant sine ~v 2 S
K and will be omitted in the remain-der of this paper.) 4



An example of information we have inluded in the prior is the porosity. Ageneri assumption is that the porosity� : S
K 7! [0; 1℄ � R; � (~v) = 'uids'reservoirhas a uniform a-priori distribution up to the perolation limit (�P) after whihthe probability deays rapidly, as shown in �gure 1.
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Figure 1: Porosity prior for �P = 0:4 and � = 0:05; theoretial urve and oneobtained from sampling.We an model this as follows. We hoose the Dirihlet parameters � = #
and �� = 1= (#
#�) where � denotes the mineral group. This leads to thefollowing Dirihlet distributionP0 (~v) / Y8k2N v 1�#N#Nk Y8j2F v 1�#F#Fj Y8i2M v 1�#M#Mi (3)whih indues P (�) = U (0; 1) by onstrution (see appendix A). The perola-tion limit is inluded by multiplying (3) byP (�;�P; �) / ( 1 () � � �Pexp�����P� � () � > �Pwhere parameter � ontrols the deay strength. The resulting prior isP�P(~v) / P0(~v)P (�(~v);�P ; �) : (4)5



2.2 Observation modelThe other important term in the Bayesian net is the observation model. Thisterm models our belief in the outome of the measurements ~m 2 R
Z given theatual omposition ~v of the reservoir. In other words, given a ertain omposi-tion this de�nes the probability distribution over the measurement values. Thevetor ~m onsists of measurement outomesmj , one for eah tool. As stated ear-lier, the model assumes that the outomes of these di�erent tool measurementsare independent given the ompositional volume frations ~v, soP (~mj~v) = ZYj=1P (mj j~v) (5)For eah of the measurement tools, we assume additive Gaussian distributedmeasurement noise, i.e. we assumemj = fj(~v) + �j : (6)The funtions fj : S

K 7! R are the deterministi tool values [Spalburg, 2004℄.These are the idealized noiseless measurement outomes. They are modeledby tool-spei� mathematial funtions, whih are based on the physis of themeasurement tools. These funtions are provided by domain experts. A moredetailed desription of these funtions, however, is beyond the sope of thispaper. The noise �j is additive and Gaussian distributed with a tool spei�variane �2j . These varianes are also provided by domain experts. Whereneessary, a log transform was applied to turn measurements with typial log-normal distributed multipliative noise into quantities with additive Gaussiannoise. So, the observational probability model an be written asP (~mj~v; ~�) / ZYj=1 exp � (mj � fj(~v))22�2j ! : (7)2.3 Bayesian infereneThe next step is given a set of observations fmoi g, i 2 Obs, to ompute the poste-rior distribution. If we were able to �nd an expression for the evidene term, i.e.for the marginal distribution of the observations P (~mo) = R~vQi2Obs P (moi j~v) P (~v) d~vthen the posterior distribution (1) ould be written in losed form and readilyevaluated. Unfortunately P (~mo) is intratable and a losed-form expressiondoes not exist. In order to obtain the desired ompositional estimates we there-fore have to resort to sampling methods.The goal of any sampling proedure is to obtain a set of N samples fxig thatome from a given (but maybe intratable) distribution �. Using these sampleswe an approximate expetation values hAi of a funtions A(x) aording tohAi = ZAx A(x)�(x)dx � 1N NXi=1 A(xi) (8)For instane, if we take A(x) = x, the approximation of the mean hxi is thesample mean 1N PNi=1 xi. 6



Name1 GR2 GR-K3 GR-U4 GR-Th5 Density6 Photo-Eletri7 Neutron8 Pulsed Neutron Capture9 NMR-Bound10 NMR-Claybound-water11 NMR-Free12 Flushed Zone Resistivity13 Deep zone Resistivity14 SoniTable 2: Petrophysial Tools Modeled.An important lass of sampling methods are the so-alled Markov ChainMonte Carlo (MCMC) methods [Neil, 1993℄. In MCMC sampling a Markovhain is de�ned that has an equilibrium distribution �, in suh a way that(8) gives an good approximation when applied to a suÆiently long hainx1; x2; : : : ; xN . To make the hain independent of the initial state x0, a burn-in period is often taken into aount. This means that one ignores the �rstM � N samples that ome from intermediate distributions and begins storingthe samples one the system has reahed the equilibrium distribution �.In our appliation we use the hybrid Monte Carlo (HMC) sampling algorithm[Duane et al., 1987℄. HMC is a powerful lass of MCMC methods that aredesigned for problems with ontinuous state spaes, suh as we onsider in thispaper. HMC an in priniple be applied to any noise model with a ontinuousprobability density, so there is no restrition to Gaussian noise models. HMCuses Hamiltonian dynamis in ombination with a Metropolis [Metropolis et al.,1953℄ aeptane proedure to �nd regions of higher probability. This leads to amore eÆient sampler than a sampler that relies on random walk for phase spaeexploration. HMC also tends to mix more rapidly than the standard MetropolisHastings algorithm.3 SimulationsThe performane of the method relies heavily on the quality of the sampler.Therefore we looked at the ability of the system to estimate the omposition ofa (syntheti) reservoir and the ability to reprodue the results. For this purpose,we set the omposition to a ertain value ~v�. We apply the observation modelto generate measurements ~mo. Then we run HMC to obtain samples from theposterior P (~vj~mo). Consisteny is assessed by omparing results of di�erent runsto eah other and by omparing them with the \ground truth" ~v�. Here, we take7



v�quartz = 0:3, v�wet-lay = 0:5, v�freewater = 0:12 and v�oil = 0:08 from whih wegenerated a set of observations ~mo = �moj	. With ~mo as input, ten simulationswere ran. From the resulting samples the means (�) and (asymmetri) errorbars (�� �1; �+ �2) are omputed for eah mineral. These values are drawn in�gure 2 (the omposition ~v� is indiated by asterisks).
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Figure 4: Likely ompositions when only the prior is known.minerals and uids. Here we assume this interest is atually in one spei�omponent u. The question then redues to seleting the most informativetool(s) t for a given mineral u.We de�ne the informativeness of a tool as the expeted derease of uner-tainty in the distribution of vu after obtaining a measurement with that tool.Usually, entropy is taken as a measure for unertainty [MaKay, 2003℄, so ameasure of informativeness is the expeted entropy of the distribution of vuafter measurement with tool t,hHu;tj~moi � �Z P (mtj~mo) Z P (vujmt; ~mo)� log2 (P (vujmt; ~mo)) dvudmt (9)Note that the information of a tool depends on the earlier measurement resultssine the probabilities in (9) are onditioned on ~mo.The most informative tool for mineral u is now indenti�ed as that tool t�whih yields in expetation the lowest entropy in the posterior distribution ofvu: t�uj~mo = argmint hHu;tj~moiIn order to ompute the expeted onditional entropy using HMC sampling10
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Figure 5: Likely ompositions when the observation of an aousti tool is in-luded.methods, we �rst rewrite the expeted onditional entropy (9) in terms of quan-tities that are onditioned only on the measurement outomes ~mo,hHu;tj~moi = � Z Z P (vu;mtj~mo)� log2 (P (vu;mtj~mo)) dvudmt (10)+ Z P (mtj~mo) Z log2 (P (mtj~mo)) dmtNow the HMC run yields a set V = nvj1; vj2; : : : ; vjKo of ompositional samples(onditioned on ~mo). We augment these by a setM = nmj1 = f1(~vj) + �j1; : : : ;mjZ = fZ(~vj) + �jZoof syntheti tool values generated from these samples (whih are indexed by j) byapplying equation 6. Subsequently, disretized joint probabilities P (vu;mtj~mo)are obtained via a two dimensional binning proedure over vu and mt for eahof the potential tools t. The binned versions of P (vu;mtj~mo) (and P (mtj~mo))an be diretly used to approximate the expeted onditional entropy using adisretized version of equation 10.We illustrate the idea of the deision support with the following simulated ex-ample. In this example, we are interested in the most informative tool for the11
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Figure 6: Likely ompositions when the observation of a soni tool and resistivitytool are inluded.mineral u = 'oil'. We assume that we have no previous measurements, i.e. weuse the prior distribution. By applying the proedure desribed above, we �ndthat the most informative tool for oil is `NMR-free' given prior information only.Now the question may be in what sense a typial measurement with the`NMR-free' tool di�ers from other andidate tools. In the following we there-fore simulate measurements with di�erent tools that are responsive to oil, andompare the resulting posteriors, illustrating|with hind-sight|the informationontent of the di�erent tools. To simulate measurements we �rst draw at ran-dom a mineral omposition ~v from the prior. This omposition is assumed tobe the ground truth. Next, this omposition is used to synthesize observationsmt = ft(~v) + �t for the di�erent tools t , being `Soni', `NMR-free', `Density'and `Neutron'; the only tools that are diretly responsive to oil, and thereforepotentially good andidates. Eah of these values mt was subsequently used asobservation in a HMC run, resulting in four sample sets. From these sets fouronditional marginals P (voiljmt) were obtained. These are plotted together withthe marginal of the prior P (voil) in �gure 7. In this �gure, we see learly thatthe posterior with `NMR-free' di�ers the most from the prior. This suggeststhat the `NMR-free' measurement was (again in hind-sight) indeed the mostinformative measurement. Indeed, it an be shown that minus the expeted12
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Figure 7: Histograms for voil; without observations (prior), or with one of NMR-free, Soni, Density or Neutron.entropy after the observation is up to a onstant equivalent to the expetedKullbak-Leibler divergene between the marginal after the observation and themarginal prior to the observation (see appendix B). In other words, informa-tive tools lead to the posteriors that di�er from the distribution prior to themeasurement.The outome of our implementation of the deision support tool is a rankingof tools aording to the expeted entropies of their posterior distributions.In this way, the user an selet a tool based on a trade-o� between expetedinformation and other fators, suh as deployment osts and feasibility.5 DisussionThis researh has demonstrated a model and methodology for obtaining om-positional estimates given some (or none) observations ombined with expertknowledge, and presented a way of seleting the most informative tools (amethod of quantifying information to be gained by performing measurements).The ability of the system to estimate ompositions is tested using synthetidata. The estimates are within one error bar (unertainty bound) from theatual value for unimodal distributions. For multimodal distributions the meanand error bar are poor statistis, and more information has to be obtained fromhistograms. Tests also on�rmed that the method is onsistent, di�erent simula-13



tions result in the approximately the same estimates with only minor di�erenes.Bayesian models are modular and therefore easily extended. Obvious extensionsare other tools (and/or other noise models), and an extension of the number ofminerals and uids. A more elaborate extensions is to inlude observations frommultiple (adjaent) depths. The model then estimates a omposition for eahdepth, and these ompositions are stohastially linked via a lithology model.This hanges the reservoir from the urrent homogeneous (aside from invasivee�ets in radial diretion) desription to an inhomogeneous one, with the ad-vantage of inluding more information, and thereby generating more reliableresults, but modeling lithology (transitions) might prove to be a hallenge.Another possible addition is the possibility to retrieve priors from a database.These might be sets of loation spei� shapes and means for the urrent Dirih-let prior, but might also be of ompletely di�erent shape (even multimodal toaount for mixtures). The urrent Dirihlet does not model mutually exlu-sive states (layered strutures suh as shales). A solution might be to modelthe prior as having multiple modes where eah mode has a di�erent set of u-ids or minerals. For example the non-reservoir mode onsisting of shale andoal (whih behave in an exlusive fashion) and a reservoir mode onsisting ofDirihlet distributed reservoir minerals and uids. This ould be sampled usingreversible jump MCMC [Green, 1995℄. It remains to be seen if this inreasedexplanatory power of the model outweighs the modeling e�ort.Regarding the representation of the results, an improvement might be toemploy some form of automati lustering algorithm to identify the modes ofthe distribution in order to report better desriptive statistis (as the varianeand mean are poor harateristis for multimodal distributions).Shell E&P are planning to use the developed methodology and software toinrease unertainty awareness among their petrophysiists. This unertaintyis inherent to log evaluation and must be dealt with in a onsistent manner.Other uses are to assist in the evaluation of (ambiguous) reservoir logs so thatevaluation unertainties beome visible and to enable petrophysiists to inves-tigate options to redue these unertainties in order to redue the number offaulty log evaluations.AknowledgementsThe researh reported here is part of the Interative Collaborative InformationSystems (ICIS) projet, supported by the Duth Ministry of Eonomi A�airs,grant BSIK03024.A Porosity PriorA usual requirement is that the porosity has a at prior distribution. Porosityis a ratio of the form � = XX+Y . Obviously 0 � X;Y � 1 sine both aresummations over a subset of S
K . If we hoose parameters appropriately (uw +puw2 � 1) then by approximation X � � (u1; w) and Y � � (u2; w). Thisensures � � Beta (u1; u2). The gamma distribution is given by�(xju;w) � 1Z (u;w)xu�1 exp�� xw�14



for x; u; w 2 R
+, and the beta distribution is given byBeta (�ju1; u2) � 1Z (u1; u2)�u1�1 (1� �)u2�1for � 2 [0; 1℄ u1; u2 2 R

+. If we require � � U (0; 1) then it suÆes to setu1 = u2 = 1, leading to X;Y � � (�j1; w). Both X and Y are of the formPJj vj . If we assume vi ?? vj () i 6= j, then vj � � � 1J ; w� ensuresthe right distribution of X;Y . Parameter w is free to hoose (within boundsdesribed above) sine it drops out in the normalization proedure; howeverusing w = 1=#groups ensures that the means sum to unity. The prior over~v 2 S
K yields P (~v) / NYn=1 v 1�NNn FYj=1 v 1�FFj+N MYi=1 v 1�MMi+N+F (11)where the produts are over non-reservoir minerals (N), uids (F) and ma-trix (M) minerals respetively. Although it is not neessary to model the non-reservoir minerals as � distributed (sine these do not a�et the value of theporosity), doing so ensures that the exp's drop out. The joint probability (11)is a Dirihlet distribution with parameters �j = 1=(GE) and shape � = G,where E 2 U = fN;F;Mg n f0g and G the number of mineral groups (e.g. theardinality of U).B KL DivergeneThe Kullbak-Leibler divergene (KL divergene) is a measure of di�erene be-tween two probability distributions [MaKay, 2003℄.D (P(x)kQ(x)) � Z P(x) log�P(x)Q(x)� dxFor example, the KL divergene between onditional marginal P (vujmt) andprior P (vu) is given byDut(mt) = D (P (vujmt) kP (vu))The expeted KL divergene is given byhDuti � Z P (mt)Dut(mt)dmtwhih is equal to Hu � hHuti, where Hu = � R P (vu) log(P (vu))dvu denotesthe entropy of the prior, and hHuti is de�ned by equation 9. Beause Hu isindependent of t, the following identity must holdargmint hHuti = argmaxt hDutiReferenesS. Duane, A.D. Kennedy, B.J. Pendleton, and D. Roweth. Hybrid Monte Carlo.Physis Letters B, 195(2):216{222, September 1987.15
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