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A B S T R A C T

We have developed software to improve screening and matching routine for victim identification based

on DNA profiles. The software, called Napoleon/Bonaparte, uses Bayesian networks for the analysis. It is

designed for effective handling of the identification process in case of a large disaster with many victims

and can be applied in the missing person program. In this paper we will describe the Bayesian network

approach and we will discuss some of the additional features to handle events with many victims.
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1. Introduction

Bayesian networks are very well suited to model statistical
relations of genetic material of relatives in a pedigree [1]. They can
be applied in kinship analysis such that whole pedigrees of
relatives of the missing persons are used in the screening phase. As
a result, correct matches can be found at the costs of much less
false hits than with methods which do not take complete pedigree
information into account. An additional advantage of a Bayesian
network approach is that the analysis tool becomes more
transparent and flexible, allowing to incorporate other relevant
factors such new models for mutation, size bias corrections,
measurement error probabilities, missing data, statistics of more
genetic markers, etc.

For these reasons we have developed software for Bayesian
network kinship analysis based on DNA profiles. The software is
called Napoleon/Bonaparte. It consists of separate parts: Napoleon
is designed to transport DNA profiles and pedigree information
from NFI database to Bonaparte for screening and matching
purpose. Bonaparte is the core for computation, database handling
and user interface. Bonaparte communicates with Napoleon (and
can communicate with other data transport systems) via standard
data interfaces. In this paper we will describe its Bayesian network
approach and we will discuss some of its additional features to
facilitate handling events with many victims.
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2. Bonapartes computational core

Bonaparte’s computational core is designed to calculate the
likelihood ratio (LR):

LR ¼ PðEjH pÞ
PðEjHdÞ

(1)

where P(.j.) denotes the conditional probability. Hp (cq. Hd) is the
hypothesis that missing person MP is equal (cq. not related) to
unidentified individual UI; E consists of DNA profiles of UI, a
pedigree Ped of which MP is a member and at least one DNA profile
in Ped. In addition, based on prior odds P(Hp)/P(Hd), Bonaparte will
return posterior odds P(HpjE)/P(HdjE). Bonaparte uses Bayesian
networks to compute these quantities.

2.1. Bayesian networks

A Bayesian network is a probability model P on a directed
acyclic graph with n nodes. For each node i in the graph, there is (1)
a random variable Xi that can assume a finite number of states xi,
and (2) a conditional probability distribution P(xijxpa(i)), where xpa(i)

are the states of the variables corresponding to the nodes pa(i) that
point towards i in the graph. The joint distribution of the Bayesian
network is the product of the conditional probability distributions

Pðx1; . . . ; xnÞ ¼
Yn

i¼1

Pðxijx paðiÞÞ: (2)

Quantities like LR as in (1) can be efficiently computed by
standard Bayesian network algorithms such as the junction tree
algorithm [2].
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Fig. 1. Bonaparte’s basic architecture.
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2.2. Bayesian networks for kinship analysis

We now will describe how Bayesian networks are used to
compute likelihoods of DNA profiles (currently restricted to
short tandem repeat (STR) markers). The likelihoods for each
locus are computed independently. We consider a given locus
and a pedigree Ped with individuals i. Each non-founder
individual i has two parents in Ped: father f(i) and mother
m(i). Founders are individuals without parents in Ped. The model
variables are the alleles of the individuals and the genotypes.
The pair of alleles of individual i is denoted as xi ¼ ðx f

i ; x
m
i Þ, with

paternal allele x f
i and maternal allele xm

i . Alleles are only
indirectly observable as genotypes x̄i in which the parental
origin is lost. So, xi = (a, b) and xi = (b, a) both lead to the same
genotype x̄i.

2.2.1. Prior model

In the current version of Bonaparte, the alleles in founders are
assumed to be independent. The probability of observing an allele
is determined from the population database and prior parameters
determined by the user. Models have been proposed in which
founder alleles are assumed correlated [3]. Their disadvantage is
the severe increase in computation time in cases with large
pedigrees.

2.2.2. Transmission model

For a non-founder individual i, the allele probability given the
alleles of its parents is

Pðxijx f ðiÞ; xmðiÞÞ ¼ Pðx f
i jx f ðiÞÞPðxm

i jxmðiÞÞ; (3)

where

Pðxt
i jxtðiÞÞ ¼

1

2

X
s¼ f ;m

Pðxt
i jxs

f ðiÞÞ with t2f f ;mg: (4)

The probabilities Pðxt
i jxs

tðiÞÞ are given by a mutation model P(b/a),
which encodes the probability that allele a is transmitted as allele
b. The current version of Bonaparte uses the uniform mutation
model,

PðbjaÞ ¼ 1�m if a ¼ b
m=ðN � 1Þ if a 6¼ b;

�
(5)

with N the number of allele-states. The mutation rate m can be set
by the user.

2.2.3. Observation model

The observation model follows straightforwardly from the
definition of the genotype x̄i,

Pðx̄ijyiÞ ¼
1 if x̄i ¼ ȳi

0 otherwise:

�
(6)

In Bonaparte, the observation model actually includes the
possibility of allele loss [4]. Due to space limitations the precise
model specification will be described elsewhere.

2.2.4. Value abstraction

In a naive implementation, the allele-state space will be
prohibitively large and make computation infeasible in larger
pedigrees. We apply value abstraction [5]. This is an exact
procedure that reduces the allele-state space by abstracting from
unobserved allele values and treating them as a single state z.

2.2.5. Likelihood computation

With the prior, transmission model, and the observation model,
we have a complete description of a Bayesian network. Within this
model we can compute P(EjHp) and P(EjHd), where E ¼ fx̄ig
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represents all observations. Hp and Hd are described in Section
2. The final likelihoods are obtained by multiplication of like-
lihoods per locus.

3. Features for large scale analysis

Bonaparte has the following additional features to facilitate
large scale matching.

� A scalable, multi-user client-server based architecture, see Fig. 1.
Computational core and the internal database runs on a server.
Via an XML and secure https interfaces, the server connects to
other systems.
� Users connect via a web browser, so that there is no need for

additional software on the clients.
� Imports/exports data through XML files facilitates data exchange

in new environments. In addition, data can be imported from
Excel.
� Pedigrees can be imported using XML files, or created and edited

using the pedigree editor.
� Matching can be scheduled for large sets of cases, but also

performed manually for individual cases.
� Project structure facilitates parallel handling of different (small

and/or large scale) cases by multiple users.
� Matching can be direct (e.g. to match UIs with PEs (Personal

Effects)) and indirect (UIs with MPs, using Bayesian networks).
� A list of LRs is presented to the user. Filter options facilitate

browsing through the results.
� All match results are stored in internal database. Rewind to any

point in back in time is possible.

A live demo version will be made available on www.dnadvi.nl.

4. Validation

Currently, Napoleon/Bonaparte is under validation. We have
defined a set of test-cases with reference LR’s computed by closed
form formulas for the simpler cases, or by brute force summation
for the more complex ones. In addition, we have compared the
results with those of Familias [6]. Details will be published
elsewhere.
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