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Abstract

In this article we consider the issue of optimal control in collaborative multi-agent
systems with stochastic dynamics. The agents have a joint task in which they have to
reach a number of target states. The dynamics of the agents contains additive control and
additive noise, and the autonomous part factorizes over the agents. Full observation of the
global state is assumed. The goal is to minimize the accumulated joint cost, which consists
of integrated instantaneous costs and a joint end cost. The joint end cost expresses the joint
task of the agents. The instantaneous costs are quadratic in the control and factorize over
the agents. The optimal control is given as a weighted linear combination of single-agent
to single-target controls. The single-agent to single-target controls are expressed in terms
of diffusion processes. These controls, when not closed form expressions, are formulated
in terms of path integrals, which are calculated approximately by Metropolis-Hastings
sampling. The weights in the control are interpreted as marginals of a joint distribution
over agent to target assignments. The structure of the latter is represented by a graphical
model, and the marginals are obtained by graphical model inference. Exact inference of the
graphical model will break down in large systems, and so approximate inference methods are
needed. We use naive mean field approximation and belief propagation to approximate the
optimal control in systems with linear dynamics. We compare the approximate inference
methods with the exact solution, and we show that they can accurately compute the optimal
control. Finally, we demonstrate the control method in multi-agent systems with nonlinear
dynamics consisting of up to 80 agents that have to reach an equal number of target states.

1. Introduction

The topic of control in multi-agent systems is characterized by many issues, originating from
various sources, including a wide variety of possible execution plans, uncertainties in the
interaction with the environment, limited operation time and supporting resources, and a
demand for robustness of the joint performance of the agents. Such issues are encountered
in, for example, air traffic management (Tomlin, Pappas, & Sastry, 1998; van Leeuwen,
Hesseling, & Rohling, 2002), formation flight (Ribichini & Frazzoli, 2003; Hu, Prandini,
& Tomlin, 2007), radar avoidance for unmanned air vehicles or fighter aircraft (Pachter &
Pachter, 2001; Kamal, Gu, & Postlethwaite, 2005; Larson, Pachter, & Mears, 2005; Shi,
Wang, Liu, Wang, & Zu, 2007), and persistent area denial (Subramanian & Cruz, 2003;
Liu, Cruz, & Schumacher, 2007; Castanon, Pachter, & Chandler, 2004).

In many control approaches in multi-agent systems, stochastic influences in the dynamics
of the agents are not taken into account or assumed negligible, and the dynamics are
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modeled deterministically. If the system is truly deterministic, then the agents can be
optimally controlled by open loop controls. However, when the stochastic influences in
the dynamics are too large to be ignored, open loop controls become far from optimal,
and the multi-agent system should no longer be modeled deterministically. The usual
approach to control in multi-agent systems with stochastic dynamics is to model the system
by a Markov Decision Processes (MDP) (Boutilier, 1996; Sadati & Elhamifar, 2006). In
principle, these are solved in discrete space and time by backward dynamic programming.
However, the discretization will make the joint state space of the multi-agent system increase
exponentially in the number of agents, and a basic dynamic programming approach will
generally be infeasible (Boutilier, 1996). An attempt to overcome this is to exploit structures
in the problem and describe the system by a factored MDP. In general these structures will
not be conserved in the value functions, and exact computations remain exponential in the
system size. Guestrin, Koller, and Parr (2002a) and Guestrin, Venkataraman, and Koller
(2002b) assumed a predefined approximate structure of the value functions, and thereby
provided an efficient approximate MDP model for multi-agent systems. A similar approach
was taken by Becker, Zilberstein, Lesser, and Goldman (2003, 2004), assuming independent
collaboration of the agents with a global reward function, resulting in transition-independent
decentralized MDPs.

In this paper we concentrate on multi-agent systems where the agents have a joint task
in which they have to reach a number of target states. We model the multi-agent system
in continuous space and time, following the approach of Wiegerinck, van den Broek, and
Kappen (2006). We make the following assumptions. The agents are assumed to have
complete and accurate knowledge of the global state of the system (assumption 1). The
dynamics of each agent is additive in the control and disturbed by additive Wiener noise
(assumption 2). The performance of the agents is valued by a global cost function, which is
an integral of instantaneous costs plus an end cost. The joint task of the agents is modeled
by the end cost. The instantaneous costs are assumed to be quadratic in the control
(assumption 3). The noise level in the dynamics of the agents is inversely proportional to
the control cost (assumption 4). Finally, we assume that both the autonomous dynamics
and the instantaneous costs factorize over the agents (assumption 5).

Under the assumptions 1 and 2, the optimal control problem is partially solved by finding
the optimal expected cost-to-go, which satisfies the so-called stochastic Hamilton-Jacobi-
Bellman (SHJB) equation. Once the optimal expected cost-to-go is given, the optimal
control is provided as the gradient of the optimal expected cost-to-go by adopting assump-
tion 3. The SHJB equation is a nonlinear partial differential equation (PDE), and this
nonlinearity makes it difficult to solve. A common approach to solving the SHJB equation
is to assume, in addition to assumption 3, that the instantaneous costs and the end cost
in the cost function are quadratic in the state, and that the dynamics are linear in the
state as well—this is known as linear-quadratic control. The optimal expected cost-to-go
then is quadratic in the state with time-varying coefficients, and the problem reduces to
solving the Riccati equations that these coefficients satisfy (Stengel, 1993; Øksendal, 1998).
Otherwise, approximation methods are needed. An approximate approach is given by the
iterative linear-quadratic Gaussian method (Todorov & Li, 2005); this yields a locally opti-
mal feedback control, and is valid in case there is little noise. We instead follow the approach
of Fleming (1978) and adopt assumption 4. Under this assumption the SHJB equation can
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be transformed into a linear PDE by performing a logarithmic transformation. Its solution
equals the expectation value of a stochastic integral of a diffusion process. In general, this is
not a closed form expression. In this paper we will estimate this expression by formulating
it as a path integral (Kappen, 2005a, 2005b), and we estimate the latter using Metropolis-
Hastings sampling. There are several other ways to estimate the path integral, such as
Hamilton Monte Carlo sampling and the Laplace approximation, but these are not covered
in this paper.

The structure of the optimal expected cost-to-go will generally be very complex due to
the dynamic couplings between the agents. By adopting assumption 5, the agents will only
be coupled through the joint end cost, which then solely determines the structure of the
optimal expected cost-to-go. This will result in state transition probabilities that factorize
over the agents. It follows that the optimal control becomes a weighted combination of
single-agent to single-target controls. The weights are given by a joint distribution over
agent to target assignments. The joint distribution has the same structure as the joint end
cost. The structure of the joint distribution is representable by a factor graph, and the
optimal control problem becomes a graphical model inference problem (Wiegerinck et al.,
2006). The complexity of the graphical model inference is exponential in the tree width
of the factor graph. Exact inference will be possible by using the junction tree algorithm,
given that the graph is sufficiently sparse and the number of agents is not too large. In
more complex situations approximate inference methods are necessary, and we show that
the optimal control can accurately be approximated in polynomial time, using naive mean
field (MF) approximation or belief propagation (BP). This makes distributed coordination
possible in multi-agent systems that are much larger than those that could be treated with
exact inference.

The paper is organized as follows. In Sections 2 and 3, we provide a review of both
the single and the multi-agent stochastic optimal control framework, developed by Kap-
pen (2005a, 2005b) and Wiegerinck et al. (2006). As an example, we will rederive linear
quadratic control. The general solution is given in terms of a path integral, and we explain
how it can be approximated with Metropolis-Hastings sampling.

In Section 4, we give a factor graph representation of the end cost function. We dis-
cuss two graphical model approximate inference methods: naive mean field approximation
and belief propagation. We show that the approximation of the optimal control in both
methods is obtained by replacing the exact weights in the controls with their respective
approximations.

In Section 5, we present numerical results. We make a comparison of the approximate
optimal controls, infered by the naive mean field approximation, belief propagation and
a greedy method, with the exact optimal control; this we do in a multi-agent system of
18 agents with linear dynamics in a two-dimensional state space, and with two target
states. Furthermore, we present results from control in multi-agent systems with nonlinear
dynamics and a four-dimensional state space, in which agents control their forward velocity
and driving direction. The controls are approximated by a combination of Metropolis-
Hastings sampling, to infer the path integrals, and naive mean field approximation, to infer
the agent to target assignments. This allowed us to control systems of up to 80 agents
with 80 target states. These results regarding nonlinear dynamics have only an illustrative
purpose.
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2. Stochastic Optimal Control of a Single Agent

We consider an agent in a k-dimensional continuous state space R
k, its state x(t) evolving

over time according to the controlled stochastic differential equation

dx(t) = b(x(t), t)dt + u(x(t), t)dt + σdw(t), (1)

in accordance with assumptions 1 and 2 in the introduction. The control of the agent is the
R

k-valued function u of x(t) and t. The noise in the dynamics is modeled by the Wiener
process w(t), i.e., a normally distributed k-dimensional stochastic process in continuous
time with mean 0 and variance t, and the k × k matrix σ which represents the variance
of the noise. Any autonomous dynamics are modeled by b, which is a R

k-valued function
of x(t) and t. The state change dx(t) is the sum of the noisy control and the autonomous
dynamics.

The behavior of the agent is valued by a cost function. Given the agent’s state x(t) = x
at the present time t, and a control u, there is an expected future cost for the agent:

Cu(x, t) = E
u
x,t

[

φ(x(T )) +

∫ T

t

dθ

(

1

2
‖Ru(x(θ), θ)‖2 + V (x(θ), θ)

)]

. (2)

The expectation E
u
x,t is taken with respect to the probability measure under which x(t)

is the solution to (1) given the control law u and the condition x(t) = x. The cost is a
combination of the end cost φ(x(T )), which is a function of the end state x(T ), and an
integral of instantaneous costs. The instantaneous cost is a sum of a state and a control
dependent term. The state dependent term V (x(θ), θ) is the cost of being in state x(θ)
at time θ. The function V is arbitrary, and represents the environment of the agent. The
control dependent term 1

2‖Ru(x(θ), θ)‖2 is the cost of the control in state x(θ) at time θ,
where ‖z‖2 = z⊤z is the Euclidean norm, and R is a full rank k × k matrix. It is quadratic
in the control, in accordance with assumption 3 in the introduction, and by assumption 4,
R is related to the variance of the noise in the control via the relation

σσ⊤ = λ(R⊤R)−1, (3)

where λ is a scalar.
The expected cost-to-go at time t minimized over all controls u defines the optimal

expected cost-to-go
J(x, t) = min

u
Cu(x, t). (4)

In Appendix A, it is explained that due to the linear-quadratic form of the optimization
problem—the dynamics (1) is linear in the action u, the cost function (2) is quadratic in
the action—the minimization can be performed explicitly, yielding a nonlinear partial dif-
ferential equation in J , the so-called stochastic Hamilton-Jacobi-Bellman (SHJB) equation.
The minimum is attained in

u(x, t) = −(R⊤R)−1∂xJ(x, t). (5)

This is the optimal control. Note that it explicitely depends on the state x of the agent at
time t, making it a feedback control.
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The optimal expected cost-to-go can be re-expressed in terms of a diffusion process (for
a derivation, we again refer to Appendix A):

J(x, t) = −λ log Z(x, t) (6)

where Z(x, t) is the expectation value

Z(x, t) = Ex,t

[

exp

(

−
1

λ
φ(y(T )) −

1

λ

∫ T

t

dθ V (y(θ), θ)

)]

(7)

and y(θ) is a diffusion process with y(t) = x and satisfying uncontrolled dynamics:

dy(θ) = b(y(θ), θ)dθ + σdw(θ). (8)

Substituting relations (3) and (6) in (5), we find the optimal control in terms of Z(x, t):

u(x, t) = σσ⊤∂x log Z(x, t). (9)

Example 1. Consider an agent in one dimension with a state x(t) described by the dynam-

ical equation (1) without autonomous dynamics (b = 0). The instantaneous cost V is zero,

and the end cost φ is a quadratic function around a target state µ:

φ(y) =
α

2
|y − µ|2.

The diffusion process y(θ) that satisfies the uncontrolled dynamics (8) is normally distributed

around the agents state x = y(t) at time t and with a variance σ2(θ − t), hence the state

transition probability for the agent to go from (x, t) to (y, T ) in space-time is given by the

Gaussian density

ρ(y, T |x, t) =
1

√

2πσ2(T − t)
exp

(

−
|y − x|2

2σ2(T − t)

)

.

The expectation value (7) is given by the integral

Z(x, t) =

∫

dyρ(y, T |x, t)e−
1

λ
φ(y) =

√

R2/α

T − t + R2/α
exp

(

−
|x − µ|2

2σ2(T − t + R2/α)

)

,

where relation (3) is used. The optimal control follows from (6) and (9) and reads

u(x, t) =
µ − x

T − t + R2/α
. (10)

This result is well known (Stengel, 1993).
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2.1 A Path Integral Formulation

Example 1 shows that for a simple system with no autonomous dynamics (b = 0) or costs
due to the environment (V = 0), we can write down the control explicitly. This is because
the uncontrolled dynamics is normally distributed, and consequently the expectation value
(7) with quadratic end cost has a closed form expression. In the general situation where b
and V are arbitrary, there no longer exists an explicit expression for the expectation value,
and the optimal control can only be obtained by approximation. We will now discuss how
this is done by taking a path integral approach (Kleinert, 2006). A detailed derivation of
the expressions presented here is given in Appendix B.

In the path integral approach, we write the expectation value (7) as a path integral:

Z(x, t) = lim
ε↓0

Zε(x(t0), t0) (11)

where x(t0) = x, t0 = t and

Zε(x(t0), t0) =
1

√

det(2πεσ2)N

∫

dx(t1) . . .

∫

dx(tN ) e−
1

λ
Sε(x(t0),...,x(tN ),t0).

It is an integral over paths (x(t0), . . . , x(tN )) in discrete time, the start x(t0) kept fixed
and εN = T − t, taken in a continuous time limit of sending the length of the time steps
ε = ti+1− ti to zero. Note that in this limit N goes to infinity and the paths become infinite
dimensional objects. The function in the exponent is the cost of the path:

Sε(x(t0), . . . , x(tN ), t0) =

φ(x(T )) +
N−1
∑

i=0

ε V (x(ti), ti) +
N−1
∑

i=0

ε
1

2

∥

∥

∥

∥

R

(

x(ti+1) − x(ti)

ε
− b(x(ti), ti)

)
∥

∥

∥

∥

2

,

The optimal control becomes a weighted average over controls that are derived from a single
path:

u(x(t0), t0) = lim
ε↓0

∫

dx(t1) . . .

∫

dx(tN ) p(x(t0), . . . , x(tN ), t0)u(x(t0), . . . , x(tN ), t0). (12)

The weights are given by

p(x(t0), . . . , x(tN ), t0) =
e−

1

λ
Sε(x(t0),...,x(tN ),t0)

√

det(2πεσ2)NZε(x(t0), t0)
.

The control derived from a path (x(t0), . . . , x(tN )) reads

u(x(t0), . . . , x(tN ), t0) =
x(t1) − x(t0)

ε
− b(x(t0), t0). (13)

Note that it only depends on the first two entries x(t0) and x(t1) in the path.
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2.2 Path Integration by Metropolis-Hastings Sampling

The path integral formulation (12) of the optimal control can generally not be computed,
because it is an integral over uncountably many paths, but there exist several ways to
approximate it. A natural approach goes by stochastic sampling of paths. Several methods
of stochastic sampling exist, the one we will use here is known as Metropolis-Hastings
sampling (Hastings, 1970). In its implementation time will be discretized: we do not take
the limit in (12) of ε decreasing to zero, but instead keep ε at a fixed value. A sample path
will be a sequence (xs(t0), . . . , x

s(tN )) of vectors in the state space R
k, with x(t0) = x the

current state of the agent at the current time t0 = t. According to equation (13), we only
need xs(t0) and xs(t1) to derive the control from a sample path (x(t0), . . . , x(tN )). The
Metropolis-Hastings sampling ensures that different paths are properly weighted, hence the
optimal control is approximated as follows:

u(x(t0), t0) ≈
〈x(t1)〉 − x(t0)

t1 − t0
− b(x(t0), t0), (14)

where 〈x(t1)〉 is the mean value of xs(t1) taken over the sample paths. Pseudo-code for the
algorithm is given in Algorithm 1.

Algorithm 1: Metropolis-Hastings sampling

Input: initial path (x(t0), . . . , x(tN ))
1: s = 1
2: repeat M times:
3: define Gaussian proposal distribution centered around (x(t1), . . . , x(tN ))

with variance equal to the noise
4: draw sample path (x′(t1), . . . , x

′(tN )) from proposal distribution
5: a = exp

(

1
λ
Sε(x(t0), x(t1), . . . , x(tN ), t0) −

1
λ
Sε(x(t0), x

′(t1), . . . , x
′(tN ), t0)

)

6: if a ≥ 1
7: set (x(t1), . . . , x(tN )) = (x′(t1), . . . , x

′(tN ))
8: else

9: set (x(t1), . . . , x(tN )) = (x′(t1), . . . , x
′(tN )) with probability a

10: end if

11: (xs(t0), . . . , x
s(tN )) = (x(t0), . . . , x(tN ))

12: s = s + 1
13: end repeat

14: compute approximate control with equation (14)

3. Stochastic Optimal Control of a Multi-Agent System

We now turn to the issue of optimally controlling a multi-agent system of n agents. In
principle, the theory developed for a single agent straightforwardly generalizes to the multi-
agent situation. Each agent a has a k-dimensional state xa that satisfies a dynamics similar
to (1):

dxa(t) = ba(xa(t), t)dt + ua(x(t), t)dt + σadwa(t), (15)

in accordance with assumptions 1, 2 and 5 in the introduction. Note that the control of
each agent not only depends on its own state xa, but on the joint state x = (x1, . . . , xn)
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of the system. The system has a joint cost function similar to (2), depending on the joint
state x and joint control u = (u1, . . . , un) of the system:

Cu(x, t) = E
u
x,t

[

φ(x(T )) +
n
∑

a=1

∫ T

t

dθ

(

1

2
‖Raua(x(θ), θ)‖2 + V (xa(θ), θ)

)]

.

The expectation E
u
x,t is taken with respect to the probability measure under which x(t) is

the solution to (15) given the control law u and the condition that x(t) = x. The cost is a
combination of the joint end cost φ(x(T )), which is a function of the joint end state x(T ),
and an integral of instantaneous costs. The instantaneous cost factorizes over the agents,
in accordance with assumption 5 in the introduction. For each agent, it is a sum of a state
dependent term V (xa(θ), θ) and a control dependent term 1

2‖Raua(xa(θ), θ)‖
2, similar to

the single agent case. In accordance with assumption 4 in the introduction, the control cost
of each agent is related to the noise in the agent’s dynamics via the relation

σaσ
⊤
a = λ(R⊤

a Ra)
−1,

where λ is the same for each agent. The joint cost function is minimized over the joint
control, yielding the optimal expected cost-to-go J . The optimal expected cost-to-go is
expressed in terms of a diffusion process via the relation

J(x, t) = −λ log Z(x, t),

where Z(x, t) is the joint expectation value

Z(x, t) = Ex,t

[

exp

(

−
1

λ
φ(y(T )) −

1

λ

n
∑

a=1

∫ T

t

dθ V (ya(θ), θ)

)]

(16)

and the y1(t), . . . , yn(t) are diffusion processes, with y = (y1, . . . , yn) and y(t) = x, satisfying
uncontrolled dynamics

dya(θ) = ba(ya(θ), θ)dθ + σadwa(θ), a = 1, . . . , n. (17)

The multi-agent equivalent of the optimal control (9) reads

ua(x, t) = σaσa
⊤∂xa

log Z(x, t). (18)

We will now show that the optimal control of an agent can be understood as an expected
control, that is, an integral over target states ya of a transition probability to the target
times the optimal control to that target. To this end, we write the expectation (16) as an
integral over the end state:

Z(x, t) =

∫

dye−
1

λ
φ(y)

n
∏

a=1

Za(ya, T ; xa, t), (19)

where the Za(ya, T ; xa, t) are implicitly defined by

∫

dya Za(ya, T ; xa, t)f(ya) = Exa,t

[

f(ya(T )) exp

(

−
1

λ

∫ T

t

dθ V (ya(θ), θ)

)]
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for arbitrary functions f . Substituting (19) into (18) yields

ua(x, t) =

∫

dya pa(ya|x, t)ua(ya; xa, t) (20)

where

ua(ya; xa, t) = σaσa
⊤∂xa

log Za(ya, T ; xa, t) (21)

is the optimal control for agent a to go from state xa at the current time t to state ya at
the end time T , and pa(ya|x, t) is a marginal of

p(y|x, t) =
1

Z(x, t)
e−

1

λ
φ(y)

n
∏

a=1

Za(ya, T ; xa, t).

3.1 Discrete End States

The agents have to fulfill a task of arriving at a number of target states at the end time
according to an initially specified way: for example, they should all arrive at the same
target, or they should all arrive at different targets. The targets are considered regions
G1, . . . , Gm in the state space, and the end cost φ is modeled as follows:

e−
1

λ
φ(y) =

∑

s

w(s)
n
∏

a=1

wa(ya; sa), wa(ya; sa) = e−
1

λ
φa(ya;sa), (22)

where the sum runs over assignments s = (s1, . . . , sn) of agents a to regions Gsa
. φa(ya; sa)

is a cost function associated to region Gsa
, returning a low cost if the end state ya of agent

a lies in the region Gsa
and a high cost otherwise. w(s) is a weight, grading the assignments

s and thereby specifying the joint task of the agents. Assignments that result in a better
fulfillment of the task have a higher weight. In a situation where all agents have to go to
the same target, for example, a vector s that assigns each agent to a different target will
have a low weight w(s).

With this choice of end cost, equation (19) factorizes as

Z(x, t) =
∑

s

w(s)

n
∏

a=1

Za(sa; xa, t)

where

Za(sa; xa, t) =

∫

dyaZa(ya, T ; xa, t)wa(ya; sa). (23)

The interpretation of Za(sa; xa, t) is that −λ log Za(sa; xa, t) is the expected cost for agent
a to move from xa to target sa. The optimal control (20) of a single agent a becomes

ua(x, t) =
m
∑

sa=1

p(sa|x, t)ua(sa; xa, t), (24)

where

ua(sa; xa, t) = σaσa
⊤∂xa

log Za(sa; xa, t) (25)
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is the control for agent a to go to target sa, and the weights p(sa|x, t) are the single-agent
marginals

p(sa|x, t) =
∑

s\sa

p(s|x, t) (26)

of the joint distribution

p(s|x, t) =
1

Z(x, t)
w(s)

n
∏

a=1

Za(sa; xa, t). (27)

The weight p(s|x, t) equals the ratio exp
(

− 1
λ
J(s; x, t)

)

/ exp
(

− 1
λ
J(x, t)

)

, where J(s; x, t) =
−λ log w(s) −

∑n
a=1 λ log Za(sa; x, t) is the optimal expected cost-to-go in case the agents

have predetermined targets that are specified by the assignment s; an assignment of agents
to targets that has a low expected cost J(s; x, t) will yield a high weight p(s|x, t), and
the associated single-agent to single-target controls ua(sa; xa, t) will be predominant in the
optimal controls ua(x, t).

3.2 Metropolis-Hastings Sampling in Multi-Agent Systems

In general, both the controls ua(sa; xa, t) and the marginals p(sa|x, t) in the optimal con-
trol (24) do not have a closed form solution, but have to be inferred approximately. The
controls ua(sa; xa, t) can be approximated by the Metropolis-Hastings sampling discussed
in Section 2.2. Inference of the marginals involves the inference of the path integral formu-
lations of the Za(sa; xa, t):

Za(sa; xa, t) = lim
ε↓0

1
√

det(2πεσ2)N

∫

dxa(t1) . . .

∫

dxa(tN )e−
1

λ
Sε(xa(t0),...,xa(tN ),t0;sa)

with xa(t0) = xa, t0 = t and

S(xa(t0), . . . , xa(tN ), t0; sa) = φa(xa(T ); sa)

+

N−1
∑

i=0

ε V (xa(ti), ti) +

N−1
∑

i=0

ε
1

2

∥

∥

∥

∥

Ra

(

xa(ti+1) − xa(ti)

ε
− ba(xa(ti), ti)

)∥

∥

∥

∥

2

.

The value of Za(sa; xa, t) is generally hard to determine (MacKay, 2003). Possible approxi-
mations include the maximum a posteriori (MAP) estimate and the inclusion of the variance
in the sample paths. A third approximation is to take the average of the path costs as an
estimate of log Za(sa; xa, t); this means that the entropy of the distribution in the path
integral is neglected.

4. Graphical Model Inference

The additional computational effort in multi-agent control compared to single-agent control
lies in the computation of the marginals p(sa|x, t) of the joint distribution p(s|x, t), which
involves a sum over all mn assignments s. For small systems this is feasible, but for large
systems this is only so if the summation can be performed efficiently. An efficient approach
is provided by graphical model inference, which relies on a factor graph representation of
the joint distribution.
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Figure 1: Example of a factor graph for a multi-agent system of four agents. The couplings
are represented by the factors A, with A = {1, 4}, {1, 2}, {2, 4}, {3, 4}, {2, 3}.

4.1 A Factor Graph Representation of the Joint Distribution

The complexity of the joint distribution is in part determined by the weights w(s) in the end
cost function (22). These weights determine how the agents consider the states of the other
agents. In the most complex case, the way one agent takes the state of another agent into
account will depend on the states of all the other agents. The situation is less complicated
when an agent considers the states of some agents independently of the states of the others.
This means that the joint end cost has a factorized form:

w(s) =
∏

A

wA(sA), (28)

the A being subsets of agents. This structure is represented graphically by a so-called factor
graph (Kschischang, Frey, & Loeliger, 2001). See Figure 1 for an example. The agents a and
the factors A are nodes in the factor graph, represented by circles and squares respectively,
and there is an edge between an agent a and a factor A when a is a member of subset A,
that is, when wA in the factorization of w depends on sa. From (27) it is immediate that
the joint distribution p(s|x, t) factorizes according to the same factor graph.

4.2 The Junction Tree Algorithm

Efficient inference of the distribution p(s|x, t) by means of its factor graph representation is
accomplished by using the junction tree algorithm (Lauritzen & Spiegelhalter, 1988). The
complexity of this algorithm is exponential in the induced tree width of the graph. A small
tree width can be expected in systems where the factor graph is sparse, which is the case
when the agents take the states into account of a limited number of other agents. This
implies that multi-agent systems with sparse graphs and a limited number of targets are
tractable (Wiegerinck et al., 2006). The factor graph in Figure 1 is an example of a sparse
graph. On the other hand, should each agent take the state of each other agent into account,
then the junction tree algorithm does not really help: the underlying factor graph is fully
connected and the tree width of the graph equals the number of agents in the system.

Exact computation of the optimal control will be intractable in large and complex multi-
agent systems, since the junction tree algorithm requires memory exponential in the tree
width of the factor graph. Instead we can use graphical model approximate inference
methods to approximately infer the marginals (26). We will proceed with a discussion of
two such methods: naive mean field (MF) approximation (Jordan, Ghahramani, Jaakkola,
& Saul, 1999) and belief propagation (BP) (Kschischang et al., 2001; Yedidia, Freeman, &
Weiss, 2001).
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4.3 Naive Mean Field Approximation

Our starting point is to note that the optimal expected cost-to-go is a log partition sum,
also known as a free energy. Consider the variational free energy

F (q) = −〈λ log w〉q −
∑

a

〈log Za〉qa
− λH(q),

where 〈 〉q and 〈 〉qa
denote expectation values with respect to distribution q and marginals

qa respectively, and H(q) is the entropy of q:

H(q) = −
∑

s

q(s) log q(s).

The optimal expected cost-to-go equals the variational free energy minimized over all distri-
butions q. In the naive mean field approximation one considers the variational free energy
restricted to factorized distributions q(s) =

∏

a qa(sa). The minimum

JMF = min
q=

Q

a
qa

F (q)

is an upper bound for the optimal expected cost-to-go J , it equals J in case the agents are
uncoupled. F has zero gradient in its local minima, that is,

0 =
∂F (q1(s1) · · · qn(sn))

∂qa(sa)
a = 1, . . . , n, (29)

with additional constraints for normalization of the distributions qa. Solutions to this set
of equations are implicitly given by the mean field equations

qa(sa) =
Za(sa)〈w|sa〉q

∑n
s′a=1 Za(s′a)〈w|s′a〉q

(30)

where 〈w|sa〉q is the conditional expectation of w under q given sa:

〈w|sa〉q =
∑

s1,...,sn\sa

(

∏

a′ 6=a

qa′(sa′)

)

w(s1, . . . , sn).

The mean field equations are solved by means of iteration; this procedure results in a
convergence to a local minimum of the free energy.

The mean field approximation of the optimal control is found by taking the gradient
with respect to x of the minimum JMF of the free energy. This is similar to the exact case
where the optimal control is the gradient of the optimal expected cost-to-go, equation (18).
Using (29), we find

ua(x, t) = −
1

λ
σaσa

⊤∂xa
JMF(x, t) =

∑

sa

qa(sa)ua(xa, t; sa).

Similar to the exact case, it is an average of the single-agent to single-target optimal controls
ua(xa, t; sa) given by equation (25), where the average is taken with respect to the mean
field approximate marginal qa(sa) of agent a.
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4.4 Belief Propagation

In belief propagation, we approximate the free energy by the Bethe free energy, and we
minimize the latter. The Bethe free energy is defined by

FBethe({qa, qA}) = −
∑

A

〈λ log wA〉qA
−
∑

a

〈λ log Za〉qa
− λ

∑

A

H(qA) + λ
∑

a

(na − 1)H(qa).

(31)
It is a function of ‘beliefs’ qa(sa) and qA(sA), which are non-negative normalized functions
that satisfy consistency relations:

∀a ∀A ∋ a :
∑

sA\a

qA(sA) = qa(sa).

The H(qa) and H(qA) are the entropies of the beliefs qa and qA, na denotes the number of
neighbors of node a in the factor graph.

Belief propagation is an algorithm that computes the beliefs (Kschischang et al., 2001).
In case the joint distribution p has a factor graph representation that is a tree, belief prop-
agation will converge to beliefs that are the exact marginals of p, and the Bethe free energy
of these beliefs equals the optimal expected cost-to-go J . If the factor graph representation
of p contains cycles, we may still apply belief propagation. Yedidia et al. (2001) showed
that the fixed points of the algorithm correspond to local extrema of the Bethe free energy.
In particular, more advanced variations on the algorithm (Heskes, Albers, & Kappen, 2003;
Teh & Welling, 2001; Yuille, 2002) are guaranteed to converge to local minima of the Bethe
free energy (Heskes, 2003).

We find the BP approximation of the optimal control by taking the gradient of the
minimum JBethe of the Bethe free energy:

ua(x, t) = −
1

λ
σaσa

⊤∂xa
JBethe(x, t) =

∑

sa

qa(sa)ua(xa, t; sa),

with the ua(xa, t; sa) given by equation (25). Similar to the exact case and the mean field
approximation, the BP approximation of the optimal control is an average of single-agent
single-target optimal controls, where the average is taken with respect to the belief qa(sa).

5. Numerical Results

In this section, we present numerical results of simulations of optimal control in multi-
agent systems. The problem of computing the optimal controls (24) consists of two parts:
the inference of the single-agent to single-target controls (25), and the inference of the
marginals (26) of the global distribution over agent to target assignments. When the dy-
namics are linear, and the instantaneous costs V are zero, the single-agent to single-target
controls can be given in closed form. Such multi-agent systems therefore only know the issue
of infering marginal distributions. In Section 5.1 we will consider multi-agent systems of
this kind. Section 5.2 deals with the general problem of infering the optimal controls when
the dynamics are nonlinear and the instantaneous costs V are nonzero. In both sections
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Figure 2: Two agents, with noise and control in their positions, need to reach target loca-
tions at -1 and 1 at end time t = 2, each agent at a different target location. The
positions (a) and expected targets (b) over time.

the joint end cost is given by equation (22), with

w(s) =
n
∏

a,b

wa,b(sa, sb), wa,b(sa, sb) = exp
(

−
c

nλ
δsa,sb

)

, (32)

wa(ya; sa) = exp

(

−
1

λ
φa(ya; sa)

)

, φa(ya; sa) =
α

2
|ya − µsa

|2, (33)

where c determines the coupling strength between the agents, and the µsa
are the target

states.

5.1 Linear Dynamics

We begin with an illustration of optimal control by showing a simulation of an exactly
solvable stochastic multi-agent system. In this system of two agents in one dimension, the
agents satisfy dynamics (15) with ba equal to zero. There are two target states, x = µ1 = −1
and x = µ2 = 1. The task of the agents is for each one to go to a different target. The
instantaneous costs V in the cost function are zero, and the end cost function is given by
equations (22), (32) and (33) with α = 20 and c = −4. The negative sign of the coupling
strength c implies a repulsion between the agents. The control cost parameter R equals 1,
the noise level σ2 lies at 0.5. The agents start at x = 0 at time t = 0, the end time lies at
T = 2. To prevent overshooting the targets, udt should be small compared to the distance
to the target states. This is done by choosing dt = 0.05(T − t + 0.05).

Figure 2 shows the agents’ positions and expected targets
∑

sa=1,2 p(sa|x, t)µsa
over

time. We see that up to time t = 1, the agents have not decided to which target each of
them will go, and they remain between the two targets. Then, after t = 1, a final decision
seems to have been made. This delayed choice is due to a symmetry breaking in the cost-to-
go as time increases. Before the symmetry breaking, it is better to keep options open, and
see what the effect of the noise is. After the symmetry breaking, time is too short to wait
longer and a choice has to be made. This phenomenon is typical for multi-modal problems.

We proceed with a quantitative comparison of the different control methods that arise
from the exact or approximate inferences of the marginals of the joint distribution (27).
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Figure 3: The deviation from the optimal cost (a) and the required CPU Time in seconds
(b) as functions of the noise. The lines represent exact (· − ·), Greedy (· · · ), MF
(—) and BP (−−) control.

The example we consider is a multi-agent system of n = 18 agents in a two-dimensional
state space with zero instantaneous costs (V = 0) and no autonomous dynamics (ba = 0).
The end cost function is given by equations (22), (32) and (33). The two targets are located
at µ1 = (−1, 0) and µ2 = (1, 0). α = 20 and c = −0.5. The control cost matrix R equals
the identity matrix. The agents start in (0, 0) at time t = 0, the end time lies at T = 2,
and time steps are of size dt = 0.05(T − t + 0.05).

The approximations are naive mean field approximation and belief propagation, as de-
scribed in Section 4, and greedy control. By greedy control we mean that at each time step
each agent chooses to go to its nearest target. We include this approximation because it is
simple and requires little computation time, and for those reasons it is an obvious choice
for a naive approximation. Because a greedy control policy neglects the choices of the other
agents, we expect that it will give an inferior performance.

For each approximation, Figure 3(a) shows the cost under the approximate (optimal)
control minus the cost under exact (optimal) control, averaged over 100 simulations, and for
different noise levels. The same noise samples were used for the approximate and the exact
control. We see that both naive mean field approximation and belief propagation yield
costs that on average coincide with the cost under exact control: the average cost difference
under both methods does not significantly differ from zero. Greedy control, on the other
hand, yields costs that are significantly higher than the costs under exact control; only in
the deterministic limit does it converge to the cost under exact control, when both controls
coincide. Figure 3(b) shows the CPU time required for the calculation of the controls under
the different control methods. This is the average CPU time of an entire simulation. Each
simulation consists of 73 time steps, and at each time step the control is calculated for each
agent. We observe that greedy control is at least 10 times faster than the other methods,
and exact control is nearly 100 times more time consuming than the other methods. Belief
propagation gives a performance that for all considered noise levels is a bit quicker than the
naive mean field approximation, but this may be the result of implementation details. We
have also done simulations with attractive coupling c = 0.5; this returned results similar to
the ones with repulsive coupling c = −0.5 that we presented here.
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Figure 4: The cumulative control cost over time, in case of a strong repulsive coupling

c = −2 and a low noise level σ2 = 0.1. The curves represent exact (· − ·), MF
(—), and BP control (−−).

Although Figure 3 suggests that belief propagation and naive mean field approximation
perform equally well, this is not always the case, since for certain combinations of the noise
level and the coupling strength the BP control is more costly than MF control and exact
control. The origin of this difference lies in the symmetry breaking, which tends to occur
later under BP and earlier under MF when compared to exact control. We observe this
in Figure 4, which shows the cumulative cost over time for the control methods in the
multi-agent system, now with a coupling strength c = −2 and a fixed noise level σ2 = 0.1.
The cumulative costs are averages over 100 simulations. The cost under MF control lies a
bit higher than the cost under exact control, whereas the cost under BP control initially
is lower than the cost under the other control methods, but at t = 1.7 it starts to increase
much faster and eventually ends up higher. Including the end costs, we found total costs
26.13 ± 0.12 under exact control, 26.19 ± 0.12 under MF control, and 35.5 ± 0.4 under BP
control. This suggests that it is better to have an early symmetry breaking than a late
symmetry breaking.

The time required for computing the control under the various methods depends on the
number of agents in the multi-agent system. Figure 5 shows the required CPU time as a
function of the number of agents n in the two-dimensional multi-agent system considered
above. We see that the exact method requires a CPU time that increases exponentially
with the number of agents. This is what may be expected from the theory, because the
exact method uses the junction tree algorithm which has a complexity that is exponential
in the tree width of the underlying graph, i.e., exponential in n. For the greedy method,
the CPU time increases linearly with the number of agents, which is in agreement with the
fact that under greedy control there is no coupling between the agents. The required CPU
time increases polynomially for both the mean field approximation and belief propagation.

5.2 Nonlinear Dynamics

We now turn to multi-agent systems with nonlinear dynamics. To control these systems, we
must approximate both the graphical model inference as well as the single-agent to single-
target control problem (12). We consider a multi-agent system in which the agents move in
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Figure 5: The required CPU time in seconds for the calculation of the controls at a different
number of agents. Exact (· − ·), greedy (· · ·), MF (—), and BP control (−−).

two dimensions and have a four-dimensional state that is specified by the agents location
(xa, ya), its forward velocity va, and its driving direction ϕa. The dynamics of each agent
is given by the equations

dxa = va cos ϕa dt

dya = va sinϕa dt

dva = uadt + σadwa

dϕa = ωadt + νadξa.

The first two equations model the kinematics of the agent’s position for a given forward
velocity and driving direction. The last two equations describe the control of the speed and
the driving direction by application of a forward acceleration ua and an angular velocity
ωa. The noise in the control is modeled by the standard normal Wiener processes wa and
ξa and the noise level parameters σa and νa. Note that the noise does not act in dimensions
other than those of the control. Although the control space counts less dimensions than
the state space, the example does fit in the general framework: we refer to Appendix C for
details.

We look at two different tasks. The first task is that of obstacle avoidance in a multi-
agent system of three agents. The agents each have to reach one of three target locations and
avoid any obstacles in the environment. Each target location should be reached by precisely
one agent; we model this with an end cost function, given by equations (22), (32) and (33),
with α = ∞ and c = −0.5. The targets are located at (10, 15), (45, 12) and (26, 45), and the
agents should arrive with zero velocity. The control cost matrix R is the identity matrix.
λ = 0.1. The instantaneous cost V equaled 1000 at the locations of the obstacles, and zero
otherwise. The agents start at time t = 0, the end time lies at T = 20, and time steps dt
are of size 0.2. The starting locations of the agents are (18, 31), (25, 12) and (39, 33), and
the agents start with zero velocity. The sample paths are discrete time paths in the two-
dimensional space of the forward velocity v and the driving direction ϕ. They are specified
by their values at times ti = t + i ε, i = 0, . . . , N − 1, with ε = T−t

N−1 and N = 7, the value
at time t0 equals the current state of one of the agents, and the value at time tN equals
one of the target end states. The control for each agent to one of the targets is computed
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Figure 6: Three agents, with noise and control in their forward velocities and driving direc-
tions, have to reach three targets (marked by ‘X’) in an environment containing
also a number of walls. Each agent starts at a different location (marked by ‘O’)
and with zero forward velocity, and each agent should arrive at a different target
with zero velocity without hitting the walls. (a) The trajectories that the agents
followed to reach the targets. (b) Sample paths.

with a Metropolis-Hastings sampling of paths, according to Subsection 3.2. The proposal
distribution is a 2N -dimensional Gaussian, centered around the agent’s current planned
path, and with a variance equal to the noise level in the agent’s dynamics. The expectation
values Za(sa; xa, t) are estimated by the average costs of the sample paths. We have also
tried MAP estimation of Za(sa; xa, t) and an inclusion of the variance in the sample paths,
but the former did not show a significant difference, and the latter returned estimates that
fluctuated heavily. Figure 6(a) shows the environment and the trajectories of the agents
from their starting locations to the targets. Each agent manages to avoid the obstacles and
arrive at one of the targets with zero velocity, such that each target is reached by a different
agent.

The second task is that of coordination in the multi-agent system as shown in Fig-
ure 7(a). In this system there are no instantaneous costs (V = 0). The agents have to move
from their initial positions to a number of target locations. They should arrive at these
locations with zero velocity and horizontal driving direction. There is an equal number
of agents and target locations, and each agent has to reach a different target. The initial
locations are aligned vertically, and so are the target locations, but there is a vertical dis-
placement between the two. Thus the agents have to coordinate their movements in order
to reach the targets in a satisfactory way.

The agents start at time 0, the end time lies at 100, and they make time steps of size
dt = T−t

2(N−1) , with N = 7, until dt < 0.01. At each time step the controls are computed by
a Metropolis-Hastings sampling of paths and a naive mean field approximation to infer the
marginals pa(sa|x, t) that weigh the single-agent to single-target controls, equations (24)
and (26). The sample paths were discretized into seven equidistant time points from the
present time to the end time. The proposal distribution was taken a Gaussian, which was
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centered around the agent’s current planned path and with a variance equal to the noise
level in the agent’s dynamics. Figure 7(a) shows an example of the trajectories of a system
of 10 agents. It was obtained with 10 sample paths per agent-target combination. We
observe that the agents reach the targets, and that each target is reached by precisely one
agent, as required. Due to the noise in the second order dynamics of the agents, it takes
the agents less effort to approach a target than to remain there, since the former allows
exploitation of the noise while the latter requires a constant correction of the state changes
caused by the noise. The result is that the trajectories of the agents are more curved and
elongated than what would be expected in the situation without noise. The simulation was
carried out as well for a larger number of agents. Figure 7(b) shows the required CPU time
as a function of the number of agents, both under exact and MF inference of the marginals
of the agents. Note that the complexity of the graphical model inference problem scales as
nn, with n the number of agents. Exact inference using the junction tree algorithm was
only feasible for n < 10.

6. Discussion

We studied the use of graphical model inference methods in optimal control of stochastic
multi-agent systems in continuous space and time where the agents have a joint task to
reach a number of target states. Rather than discretizing, as is commonly done and typically
makes large systems intractable due to the curse of dimensionality, we followed the approach
developed by Wiegerinck et al. (2006), modeling the system in continuous space and time.
Under certain assumptions on the dynamics and the cost function, the solution can be given
in terms of a path integral.

The path integral can be computed in closed form in a few special cases, such as the
linear-quadratic case, but in general it has to be approximated. This can be done by a
variety of methods. The method we considered in this paper is MCMC sampling. The
dimension of the sample paths was kept low (N = 7) to limit the curvature of the sample
paths. The gain of limiting the curvature is that the variance in the samples is reduced
and less samples are needed. By limiting the curvature, however, we introduce a bias. In
addition, in the presence of obstacles insufficient curvature would make the sampler return
sample paths that run through the obstacles. We believe that more advanced MCMC
methods such as Hybrid MC sampling (Duane, Kennedy, Pendleton, & Roweth, 1987) and
overrelaxation (Neal, 1998) can improve the inference of the path integrals.

Apart from MCMC sampling, there are other approximation methods that one could
consider, such as the Laplace approximation or a variational approximation. The Laplace
approximation becomes exact in the noiseless limit and could be useful in low noise regimes
as well. The variational approximation approximates the path integral (11) by a Gaussian
process (Archambeau, Opper, Shen, Cornford, & Shawe-Taylor, 2007), and could be partic-
ularly useful in the high noise regime. A drawback of the variational approach, however, is
that it cannot be straightforwardly applied to situations with infinite instantaneous costs,
like hard obstacles in the environment that we considered here.

Wiegerinck et al. (2006) showed that for systems that are sufficiently sparse and in which
the single-agent to single-target controls can be determined in closed form, e.g. linear-
quadratic control with time-independent coefficients, exact inference can be achieved using
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Figure 7: (a) The trajectories of 10 agents from starting locations ‘O’ to 10 targets ‘X’. (b)
The required CPU time in seconds as a function of the number of agents, with
the number of targets equal to the number of agents. The lines represent exact
(· − ·) and MF (—) inference of the marginals.
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the junction tree algorithm. Van den Broek, Wiegerinck, and Kappen (2007) considered
a multi-agent system with second-order dynamics, linear autonomous dynamics and zero
instantaneous costs, and showed that graphical model inference by naive mean field ap-
proximation significantly outperformed a greedy inference. Here we showed that a close to
optimal result can be achieved as well in dense systems, using graphical model approximate
inference methods. The approximation methods that we considered were naive mean field
approximation and belief propagation. We demonstrated their performances in an example
system where exact inference is significantly more time consuming. Mean field approxima-
tion showed to work very well, returning costs for control equal to the optimal ones, belief
propagation performed similarly. Below a certain value for the ratio of coupling strength
to the noise level, the symmetry breaking in the control process takes place earlier under
mean field approximation when compared to exact inference, and later under belief prop-
agation. An early symmetry breaking does not increase the costs for coordination much,
however, a late symmetry breaking does, making the performance under belief propagation
suboptimal.

Some variations on the considered case are also possible within the general framework.
Wiegerinck, van den Broek, and Kappen (2007) discuss situations where agents sequentially
visit a number of targets, and where the end time is not fixed. It focusses on prefered
trajectories in state space over time, instead of prefered states at the end time; this is
achieved by modeling the path cost in a way similar to how we have modeled the end cost.
The problem where agents have to intercept a moving target with noisy dynamics is also
covered there.

The control formalism developed by Kappen (2005a, 2005b) and applied to multi-agent
coordination by Wiegerinck et al. (2006) and in this article, demands that the noise and
the control act in the same dimensions. One way to satisfy this constraint is to assume
that the agents are identical. In addition, the single agent dynamics should be such that
the noise and the control act in the same dimensions. We saw that for the two-dimensional
second order system in Section 5.2 this condition was satisfied in a natural way. However,
in general one can think of examples of control problems where equation (3) is violated. An
interesting future direction of research is to investigate to what extend the path integral
approach can be used as an approximation in such cases.

The paper assumes that the joint state space of the agents is observable to all agents.
For large multi-agent systems, however, it will be more realistic that an agent only observes
its own state and the states of agents that are physically nearby. Our approach does not
directly apply to such situations. Depending on the joint task of the agents, it may be
a valid approximation to do optimal control in the sub-system consisting of those agents
that one agent does observe. If the task of the agents is to avoid collisions, then it will be
sufficient to consider only the states of agents that are nearby, but if the task is to all go
to the same target then it will be crucial to have information about the states of all other
agents. A natural alternative to deal with partial observability is to describe the multi-agent
system by a decentralized POMDP (Seuken & Zilberstein, 2008). It is not clear however,
how such an approach would combine with the path integral formalism.

The topic of learning has not been addressed in this paper, but clearly is of great
interest. However, one could argue that a sampling procedure to compute the path integral
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corresponds to a learning of the environment. A discussion on this line of thought can be
found in (Kappen, 2007).

There are many more possible model extensions worthwhile exploring in future research.
Obvious examples are bounded controls, or a limited observation of the global state of the
system; these issues are already of interest to study in the single agent situation. Others
apply typically to the multi-agent situation. In the context of physical agents, introduc-
ing penalties for collisions between agents would become relevant. Typically, these types
of model extensions will not have a solution in closed form, and will require additional
approximate numerical methods. Some suggestions are given by Kappen (2005a, 2005b).
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Appendix A. Stochastic Optimal Control

In this appendix we give a derivation of (5), (6) and (7), starting from (1), (2), (3) and
(4). Detailed discussions can be found in many works on stochastic optimal control, for
example that of Kushner (1967), Fleming and Rishel (1975), Fleming (1978), Øksendal
(1998), Stengel (1993), and Kappen (2005a, 2005b).

The optimal expected cost-to-go J in a state x at time t is defined as

J(x, t) = min
u

Cu(x, t), (34)

where

Cu(x, t) = E
u
x,t

[

φ(x(T )) +

∫ T

t

dθ

(

1

2
‖Ru(x(θ), θ)‖2 + V (x(θ), θ)

)]

(35)

is the expected cost given the control law u. These are the equations (4) and (2) in the
main text. We first show that J satisfies the stochastic Hamilton-Jacobi-Bellman (SHJB)
equation

−∂tJ = min
u

(

1

2
‖Ru‖2 + (b + u)⊤∂xJ +

1

2
Tr
(

σσ⊤∂2
xJ
)

+ V

)

, (36)

with boundary condition J(x, T ) = φ(x). This equation is derived in the following way. For
any moment in time θ between t and T it holds that

J(x, t) = min
u

E
u
x,t

[

Cu(x(θ), θ) +

∫ θ

t

ds

(

1

2
‖Ru(x(s), s)‖2 + V (x(s), s)

)]

= min
u

E
u
x,t

[

J(x(θ), θ) +

∫ θ

t

ds

(

1

2
‖Ru(x(s), s)‖2 + V (x(s), s)

)]

.

The first line follows from dividing the integral from t to T into two integrals, one from t
to θ and one from θ to T , and using the definition of the cost function C, the second line
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follows from the definition of J . A rewriting yields

0 = min
u

E
u
x,t

[

J(x(θ), θ) − J(x, t)

θ − t
+

1

θ − t

∫ θ

t

ds

(

1

2
‖Ru(x(s), s)‖2 + V (x(s), s)

)]

.

Taking the limit θ → t we obtain

0 = min
u

E
u
x,t

[

dJ(x(t), t)

dt
+

1

2
‖Ru(x(t), t)‖2 + V (x(t), t)

]

. (37)

Subsequently, we apply to dJ(x(t), t) the well known chain rule for diffusion processes:

dJ(x(t), t) =
∑

i

∂J(x(t), t)

∂xi
dxi(t) +

∂J(x(t), t)

∂t
dt +

1

2

∑

i,j

∂2J(x(t), t)

∂xi∂xj
dxi(t)dxj(t). (38)

It differs from the chain rule for deterministic processes in that it also contains a term
quadratic in dx. This extra term does not vanish, because the Wiener process appearing in
the dynamics (1) has quadratic variation that increases linear in time:

E
u
x,t [dwi(t)dwj(t)] = δijdt. (39)

It follows that in expectation dxi(t)dxj(t) is equal to (σσ⊤)ijdt. By substituting the dy-
namics (1) in (38), taking expectation values, and using (39), we obtain

E
u
x,t [dJ(x(t), t)] =

∂J(x, t)

∂t
dt + (b(x, t) + u(x, t))⊤

∂J(x, t)

∂x
dt + Tr

(

σσ⊤∂2J(x, t)

∂x∂x

)

dt.

Substitution into equation (37) then yields equation (36).
The minimum of the right-hand side of equation (36) is given by

u = −(R⊤R)−1∂xJ.

This is the optimal control.
The minimization in (36) is removed by inserting the optimal control. This yields a

nonlinear equation for J . We can remove the nonlinearity by using a logarithmic transfor-
mation: if we introduce a constant λ, and define Z(x, t) through J(x, t) = −λ log Z(x, t),
then

1

2
u⊤R⊤Ru + u⊤∂xJ = −

1

2
λ2Z−2(∂xZ)⊤(R⊤R)−1∂xZ,

1

2
Tr
(

σσ⊤∂2
xJ
)

=
1

2
λZ−2(∂xZ)⊤σσ⊤∂xZ −

1

2
λZ−1Tr

(

σσ⊤∂2
xZ
)

.

The terms quadratic in ∂xZ vanish when σσ⊤ and R are related via equation (3),

σσ⊤ = λ(R⊤R)−1.

When this relation is satisfied, the SHJB equation becomes

∂tZ =

(

V

λ
− b⊤∂x −

1

2
Tr
(

σσ⊤∂2
x

)

)

Z

= −HZ, (40)
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where H a linear operator acting on the function Z.

Equation (40) must be solved backwards in time with boundary condition Z(x, T ) =

e−
1

λ
φ(x). We present a solution in terms of a forward diffusion process. It is a common ap-

proach in the theory of stochastic processes to give solutions to partial differential equations
in terms of diffusion processes. The solution to equation (40) is the expectation value

Z(x, t) = Ex,t

[

exp

(

−
1

λ
φ(y(T )) −

1

λ

∫ T

t

dθ V (y(θ), θ)

)]

, (41)

where y(θ) is a process that satisfies the uncontrolled dynamics

dy(θ) = b(y(θ), θ)dθ + σdw(θ),

and y(t) = x. The expectation Ex,t is taken with respect to the probability measure under
which y(θ) satisfies the uncontrolled dynamics with condition y(t) = x. It is clear that (41)
matches the boundary condition. To verify that it satisfies equation (40), we let

I(t) = exp

(

−
1

λ

∫ T

t

dθ V (y(θ), θ)

)

.

We see that

dI(t) =
1

λ
V (y(t), t)I(t)dt.

Let f be the function f(y) = exp
(

− 1
λ
φ(y)

)

. We again use the chain rule for stochastic
processes and apply it to f(y(T − θ)) to find

df(y(T − θ)) =
k
∑

i=1

∂f(y(T − θ))

∂yi
dyi(T − θ) +

1

2

k
∑

i,j=1

∂2f(y(T − θ))

∂yi∂yj
dyi(T − θ)dyj(T − θ)

=

(

∂f(y(T − θ))

∂y

)⊤

(−b(y(T − θ), T − θ)dθ + σdw(T − θ))

−
1

2
Tr

(

σσ⊤∂2f(y(T − θ))

∂y∂y

)

dθ.

We then choose θ = 0 and dθ = dt and combine this identity with the previous one to
obtain

df(y(T ))I(t) = f(y(T ))dI(t) + I(t)df(y(T ))

= −Hf(y(T ))I(t)dt + ∂yf(y(T ))I(t)σdw(T ).

Taking the expectation value on both sides makes the term ∂yf(y(T ))I(t)σdw(T ) disappear,
and the remaining part,

dE [f(y(T ))I(t)] = −HE [f(y(T ))I(t)] dt,

is just equation (40).
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Appendix B. The Path Integral Formulation

We are going to write the expectation value (7) as a path integral. Partitioning the time
interval from t to T into N intervals of equal length ε, t = t0 < t1 < . . . < tN = T , the
expectation value can be written as follows:

Z(x, t) =

∫

dx1 . . .

∫

dxN e−
1

λ
φ(xN )

N−1
∏

i=0

Z(xi+1, ti+1; xi, ti) (42)

where x0 = x and the Z(xi+1, ti+1; xi, ti) are implicitly defined by

∫

dxi+1 Z(xi+1, ti+1; xi, ti)f(xi+1) = E

[

f(xi+1) exp

(

−
1

λ

∫ ti+1

ti

dθ V (y(θ), θ)

) ∣

∣

∣

∣

y(ti) = xi

]

for arbitrary functions f . In the limit of infinitesimal ε, the Z(xi+1, ti+1; xi, ti) satisfy

Z(xi+1, ti+1; xi, ti) = ρ(xi+1, ti+1|xi, ti) exp

(

−
1

λ
V (xi, ti)ε

)

, (43)

where ρ(xi+1, ti+1|xi, ti) is the transition probability of the uncontrolled dynamics (8) to go
from (xi, ti) to (xi+1, ti+1) in space-time. The transition probability is given by

ρ(xi+1, ti+1|xi, ti) =
1

√

det(2πεσ2)
exp

(

−
‖σ−1(xi+1 − xi − b(xi, ti)ε)‖

2

2ε

)

.

This follows from the dynamics

xi+1 − xi = b(xi, ti)ε + σw

over the infinitesimal time interval and the observation that the Wiener process w is nor-
mally distributed around zero with variance ε. Using equation (3), we may rewrite the
transition probability as

ρ(xi+1, ti+1|xi, ti) =
1

√

det(2πεσ2)
exp

(

−
1

2λ

∥

∥

∥

∥

R

(

xi+1 − xi

ε
− b(xi, ti)

)
∥

∥

∥

∥

2

ε

)

. (44)

We obtain the path integral representation of Z(x, t) by combining equations (42), (43)
and (44) in the limit of ε going to zero:

Z(x, t) = lim
ε↓0

Zε(x0, t0) (45)

with x0 = x, t0 = t,

Zε(x0, t0) =
1

√

det(2πεσ2)N

∫

dx1 . . .

∫

dxN e−
1

λ
Sε(x0,...,xN ,t0)

and

Sε(x0, . . . , xN , t0) = φ(xN ) +
N−1
∑

i=0

ε V (xi, ti) +
N−1
∑

i=0

ε
1

2

∥

∥

∥

∥

R

(

xi+1 − xi

ε
− b(xi, ti)

)∥

∥

∥

∥

2

.
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The optimal control is given by equation (9) and is proportional to the gradient of
log Z(x, t). Substituting the path integral representation (45) of Z(x, t), we find that

u(x0, t0) = lim
ε↓0

∫

dx1 . . .

∫

dxN
e−

1

λ
Sε(x0,...,xN ,t0)

√

det(2πεσ2)NZε(x, t0)
σσ⊤∂x0

(

−
1

λ
Sε(x0, . . . , xN , t0)

)

= lim
ε↓0

∫

dx1 . . .

∫

dxN p(x0, . . . , xN , t0)u(x0, . . . , xN , t0)

where

u(x0, . . . , xN , t0) =
x1 − x0

ε
− b(x0, t0)

and

p(x0, . . . , xN , t0) =
e−

1

λ
Sε(x0,...,xN ,t0)

√

det(2πεσ2)NZε(x0, t0)
.

Note that the control u(x0, . . . , xN , t0) that results from a path (x0, . . . , xN ) only depends
on the first two entries x0 and x1 of the path.

Appendix C. Dimension Reduction

The derivation of the path integral in Appendix B was given for the case that both the
state and the control are k-dimensional. The particular case that only some dimensions of
the state are controlled can be deduced by taking the limit of infinite control cost along the
dimensions without control. The control along the latter dimensions then becomes zero, as
can be seen from equation (5). The noise in these dimensions is equal to zero in accordance
with relation (3). In the path integral formalism the transition probabilities (44) then
reduce to delta functions along the dimensions without control. The implications for the
MCMC sampling are that the dimension of the space in which to sample is also reduced,
since sampling has only to be performed in the dimensions where there is noise.
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