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Abstract

In this article we consider the issue of optimal control in collaborative multi-agent
systems with stochastic dynamics. The agents have a joint task in whichthey have to
reach a number of target states. The dynamics of the agents contains additive edrol and
additive noise, and the autonomous part factorizes over the agents. Full observain of the
global state is assumed. The goal is to minimize the accumulated joint cost, tich consists
of integrated instantaneous costs and a joint end cost. The joint end cost express the joint
task of the agents. The instantaneous costs are quadratic in the control andactorize over
the agents. The optimal control is given as a weighted linear combination okingle-agent
to single-target controls. The single-agent to single-target controls are gxressed in terms
of di usion processes. These controls, when not closed form expressions, are rfarlated
in terms of path integrals, which are calculated approximately by Metropdis-Hastings
sampling. The weights in the control are interpreted as marginals of a jant distribution
over agent to target assignments. The structure of the latter is represented by graphical
model, and the marginals are obtained by graphical model inference. Exact inference of the
graphical model will break down in large systems, and so approximate inference ethods are
needed. We use naive mean eld approximation and belief propagation to approximaté¢he
optimal control in systems with linear dynamics. We compare the approximae inference
methods with the exact solution, and we show that they can accurately compute the optima
control. Finally, we demonstrate the control method in multi-agent systems with nonlinear
dynamics consisting of up to 80 agents that have to reach an equal number of tagj states.

1. Introduction

The topic of control in multi-agent systems is characterizedby many issues, originating from
various sources, including a wide variety of possible exetion plans, uncertainties in the
interaction with the environment, limited operation time a nd supporting resources, and a
demand for robustness of the joint performance of the agentsSuch issues are encountered
in, for example, air trac management (Tomlin, Pappas, & Sastry, 1998; van Leeuwen,
Hesseling, & Rohling, 2002), formation ight (Ribichini & F razzoli, 2003; Hu, Prandini,
& Tomlin, 2007), radar avoidance for unmanned air vehicles o ghter aircraft (Pachter &
Pachter, 2001; Kamal, Gu, & Postlethwaite, 2005; Larson, Pahter, & Mears, 2005; Shi,
Wang, Liu, Wang, & Zu, 2007), and persistent area denial (Sulbamanian & Cruz, 2003;
Liu, Cruz, & Schumacher, 2007; Castanon, Pachter, & Chandlg 2004).

In many control approaches in multi-agent systems, stochast in uences in the dynamics
of the agents are not taken into account or assumed negligibl, and the dynamics are
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modeled deterministically. If the system is truly deterministic, then the agents can be
optimally controlled by open loop controls. However, when te stochastic in uences in
the dynamics are too large to be ignored, open loop controls écome far from optimal,
and the multi-agent system should no longer be modeled determistically.  The usual
approach to control in multi-agent systems with stochastic dynamics is to model the system
by a Markov Decision Processes (MDP) (Boutilier, 1996; Sadt & Elhamifar, 2006). In
principle, these are solved in discrete space and time by baward dynamic programming.
However, the discretization will make the joint state spaceof the multi-agent system increase
exponentially in the number of agents, and a basic dynamic pogramming approach will
generally be infeasible (Boutilier, 1996). An attempt to overcome this is to exploit structures
in the problem and describe the system by a factored MDP. In geeral these structures will
not be conserved in the value functions, and exact computatins remain exponential in the
system size. Guestrin, Koller, and Parr (2002a) and Guestn, Venkataraman, and Koller
(2002b) assumed a prede ned approximate structure of the vaue functions, and thereby
provided an e cient approximate MDP model for multi-agent sy stems. A similar approach
was taken by Becker, Zilberstein, Lesser, and Goldman (2002004), assuming independent
collaboration of the agents with a global reward function, resulting in transition-independent
decentralized MDPs.

In this paper we concentrate on multi-agent systems where thegents have a joint task
in which they have to reach a number of target states. We modethe multi-agent system
in continuous space and time, following the approach of Wiegrinck, van den Broek, and
Kappen (2006). We make the following assumptions. The agest are assumed to have
complete and accurate knowledge of the global state of the syem (assumption 1). The
dynamics of each agent is additive in the control and disturked by additive Wiener noise
(assumption 2). The performance of the agents is valued by algbal cost function, which is
an integral of instantaneous costs plus an end cost. The jointask of the agents is modeled
by the end cost. The instantaneous costs are assumed to be qdiatic in the control
(assumption 3). The noise level in the dynamics of the agentss inversely proportional to
the control cost (assumption 4). Finally, we assume that bot the autonomous dynamics
and the instantaneous costs factorize over the agents (asmption 5).

Under the assumptions 1 and 2, the optimal control problem ispartially solved by nding
the optimal expected cost-to-go, which satis es the so-calledstochastic Hamilton-Jacobi-
Bellman (SHJB) equation. Once the optimal expected cost-to-@ is given, the optimal
control is provided as the gradient of the optimal expected ost-to-go by adopting assump-
tion 3. The SHJIB equation is a nonlinear partial di erential equation (PDE), and this
nonlinearity makes it di cult to solve. A common approach to solving the SHJIB equation
is to assume, in addition to assumption 3, that the instantaneous costs and the end cost
in the cost function are quadratic in the state, and that the dynamics are linear in the
state as well|this is known as linear-quadratic control. The optimal expected cost-to-go
then is quadratic in the state with time-varying coe cients, and the problem reduces to
solving the Riccati equations that these coe cients satisfy (Stengel, 1993; ksendal, 1998).
Otherwise, approximation methods are needed. An approximee approach is given by the
iterative linear-quadratic Gaussian method (Todorov & Li, 2005); this yields a locally opti-
mal feedback control, and is valid in case there is little nose. We instead follow the approach
of Fleming (1978) and adopt assumption 4. Under this assumpbn the SHJB equation can
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be transformed into a linear PDE by performing a logarithmic transformation. Its solution
equals the expectation value of a stochastic integral of a dilsion process. In general, this is
not a closed form expression. In this paper we will estimate his expression by formulating
it as a path integral (Kappen, 2005a, 2005b), and we estimatehe latter using Metropolis-
Hastings sampling. There are several other ways to estimatéhe path integral, such as
Hamilton Monte Carlo sampling and the Laplace approximation, but these are not covered
in this paper.

The structure of the optimal expected cost-to-go will generaly be very complex due to
the dynamic couplings between the agents. By adopting assuption 5, the agents will only
be coupled through the joint end cost, which then solely detemines the structure of the
optimal expected cost-to-go. This will result in state transition probabilities that factorize
over the agents. It follows that the optimal control becomesa weighted combination of
single-agent to single-target controls. The weights are give by a joint distribution over
agent to target assignments. The joint distribution has the same structure as the joint end
cost. The structure of the joint distribution is representable by a factor graph, and the
optimal control problem becomes a graphical model inferene problem (Wiegerinck et al.,
2006). The complexity of the graphical model inference is gxonential in the tree width
of the factor graph. Exact inference will be possible by usig the junction tree algorithm,
given that the graph is su ciently sparse and the number of agents is not too large. In
more complex situations approximate inference methods ar@ecessary, and we show that
the optimal control can accurately be approximated in polynomial time, using naive mean
eld (MF) approximation or belief propagation (BP). This ma kes distributed coordination
possible in multi-agent systems that are much larger than th@e that could be treated with
exact inference.

The paper is organized as follows. In Sections 2 and 3, we prigle a review of both
the single and the multi-agent stochastic optimal control framework, developed by Kap-
pen (2005a, 2005b) and Wiegerinck et al. (2006). As an exam@] we will rederive linear
quadratic control. The general solution is given in terms ofa path integral, and we explain
how it can be approximated with Metropolis-Hastings sampling.

In Section 4, we give a factor graph representation of the endatost function. We dis-
cuss two graphical model approximate inference methods: rize mean eld approximation
and belief propagation. We show that the approximation of the optimal control in both
methods is obtained by replacing the exact weights in the commols with their respective
approximations.

In Section 5, we present numerical results. We make a compaon of the approximate
optimal controls, infered by the naive mean eld approximation, belief propagation and
a greedy method, with the exact optimal control; this we do in a multi-agent system of
18 agents with linear dynamics in a two-dimensional state spee, and with two target
states. Furthermore, we present results from control in muti-agent systems with nonlinear
dynamics and a four-dimensional state space, in which agentsontrol their forward velocity
and driving direction. The controls are approximated by a cambination of Metropolis-
Hastings sampling, to infer the path integrals, and naive man eld approximation, to infer
the agent to target assignments. This allowed us to control gstems of up to 80 agents
with 80 target states. These results regarding nonlinear dgamics have only an illustrative
purpose.
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2. Stochastic Optimal Control of a Single Agent

We consider an agent in ak-dimensional continuous state spaceR¥, its state x(t) evolving
over time according to the controlled stochastic di erential equation

dx(t) = b(x(t);t)dt + u(x(t);t)dt + dw (t); (2)

in accordance with assumptions 1 and 2 in the introduction. The control of the agent is the
RX-valued function u of x(t) and t. The noise in the dynamics is modeled by the Wiener
processw(t), i.e., a normally distributed k-dimensional stochastic process in continuous
time with mean 0 and variancet, and the k k matrix  which represents the variance
of the noise. Any autonomous dynamics are modeled by, which is a R-valued function
of x(t) and t. The state changedx(t) is the sum of the noisy control and the autonomous
dynamics.

The behavior of the agent is valued by a cost function. Given he agent's statex(t) = x
at the present time t, and a control u, there is an expected future cost for the agent:

Zt

CU(x;t) = Egy  (X(T))+ d 1

S 4 SKRUKO) DK VX)) )

The expectation Eg; is taken with respect to the probability measure under which x(t)
is the solution to (1) given the control law u and the condition x(t) = x. The cost is a
combination of the end cost (x(T)), which is a function of the end state x(T), and an
integral of instantaneous costs. The instantaneous cost is sum of a state and a control
dependent term. The state dependent termV (x( ); ) is the cost of being in state x( )
at time . The function V is arbitrary, and represents the environment of the agent. The
control dependent term %kRu(x( ); )k? is the cost of the control in state x( ) at time
where kzk? = z> z is the Euclidean norm, andR is a full rank k  k matrix. It is quadratic

in the control, in accordance with assumption 3 in the introduction, and by assumption 4,
R is related to the variance of the noise in the control via the elation

= (RR) Y ©)

where is a scalar.
The expected cost-to-go at timet minimized over all controls u de nes the optimal

expected cost-to-go
J(x;t)=miun CY(x;t): 4)

In Appendix A, it is explained that due to the linear-quadrati ¢ form of the optimization
problem|the dynamics (1) is linear in the action u, the cost function (2) is quadratic in
the action|the minimization can be performed explicitly, y ielding a nonlinear partial dif-
ferential equation in J, the so-called stochastic Hamilton-Jacobi-Bellman (SHJB) egation.
The minimum is attained in

u(;t)=  (R*R) '@JI(xt): (5)

This is the optimal control. Note that it explicitely depend s on the statex of the agent at
time t, making it a feedback control.
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The optimal expected cost-to-go can be re-expressed in terms afdi usion process (for
a derivation, we again refer to Appendix A):

J(x;t) = logZ(x;t) (6)

where Z (x;1) is the expectation value
1 12T
Z(x;t)= Exx exp — (¥(T)) - t dVvi(y();) (7)

and y( ) is a di usion process with y(t) = x and satisfying uncontrolled dynamics:

dy( )= by( ); )d + dw (): (8)

Substituting relations (3) and (6) in (5), we nd the optimal control in terms of Z(x;t):
u(x;t)= ~@JlogZ(x;t): 9)

Example 1. Consider an agent in one dimension with a state(t) described by the dynam-
ical equation (1) without autonomous dynamics(b= 0). The instantaneous costV is zero,
and the end cost is a quadratic function around a target state :

- i :2.
(y) = Sy

The di usion process y( ) that satis es the uncontrolled dynamics(8) is normally distributed
around the agents statex = y(t) at time t and with a variance 2( t), hence the state
transition probability for the agent to go from (x;t) to (y;T) in space-time is given by the
Gaussian density

. 1 iy xj?
(i Tty 2 2T 1) P2
The expectation value(7) is given by the integral
7 s
Z(xt)= dy (y;Tixt)e = ¥ = R exp x|

T t+Re= 22T t+R=) '

where relation (3) is used. The optimal control follows from(6) and (9) and reads

X

OO T Res

(10)
This result is well known (Stengel, 1993)
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2.1 A Path Integral Formulation

Example 1 shows that for a simple system with no autonomous dyamics (b = 0) or costs
due to the environment (V = 0), we can write down the control explicitly. This is because
the uncontrolled dynamics is normally distributed, and consequently the expectation value
(7) with quadratic end cost has a closed form expression. Intie general situation whereb
and V are arbitrary, there no longer exists an explicit expressiao for the expectation value,
and the optimal control can only be obtained by approximation. We will now discuss how
this is done by taking a path integral approach (Kleinert, 2006). A detailed derivation of
the expressions presented here is given in Appendix B.
In the path integral approach, we write the expectation value (7) as a path integral:

Z(x:t) =lim Z-(x(to); to) (11)
where x(tp) = X, to =t and
1 z Z
. — - LS (x(to);x (tn )ito) -
" , — TR -
Z+(X(to); to) p—det(z o dx(ta) dx(tn) e ° N
It is an integral over paths (x(tp);:::;X(tn)) in discrete time, the start x(tg) kept xed

and "N = T t, taken in a continuous time limit of sending the length of the time steps
"= tj+1 tj to zero. Note that in this limit N goes to in nity and the paths become in nite
dimensional objects. The function in the exponent is the cosof the path:

% 1 X 1 . . 2
x(M)+ vty + o s r X)X gy

i=0 i=0 2 "

The optimal control becomes a weighted average over contrelthat are derived from a single
path:

Z z
u(x(to);to) = Ii"rQ0 dx(ty) ;0 dx(tn) p(X(to);:::;x(tn);to) u(X(to); i x(tn);to): (12)
The weights are given by

e LS (x(to);sx (tn )ito)

Px(to)i:: 23 x(tn)ito) = P e o)

u(x(to); i x(tn);to) = ———=  b(X(to);to): (13)
Note that it only depends on the rst two entries X(tg) and x(t1) in the path.
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2.2 Path Integration by Metropolis-Hastings Sampling

The path integral formulation (12) of the optimal control ca n generally not be computed,
because it is an integral over uncountably many paths, but trere exist several ways to
approximate it. A natural approach goes by stochastic samphg of paths. Several methods
of stochastic sampling exist, the one we will use here is knawas Metropolis-Hastings
sampling (Hastings, 1970). In its implementation time will be discretized: we do not take
the limit in (12) of " decreasing to zero, but instead keepj at a xed value. A sample path

will be a sequence X5(to);::::x5(tn)) of vectors in the state spaceRK, with x(tg) = x the
current state of the agent at the current time to = t. According to equation (13), we only
need x3(tp) and x5(t1) to derive the control from a sample path (x(to);:::;X(tn)). The

Metropolis-Hastings sampling ensures that di erent paths are properly weighted, hence the
optimal control is approximated as follows:

Pl X e o) (14)
1 0

where lx(t1)i is the mean value ofx3(t1) taken over the sample paths. Pseudo-code for the
algorithm is given in Algorithm 1.

u(x(to);to)

Algorithm 1.  Metropolis-Hastings sampling
Input: initial path ( X(tg);:::;x(tn))

1:s=1

2: repeat M times:

4:  draw sample path xqt1);:::;xYtyn)) from proposal distribution

5: az=exp 1S (X(to);x(t1):::1;x(tn)ito) 1S (x(to):xqt1);:::;xYtn); o)
6: ifa 1

7 set (x(t1);::::x(tn)) = ( xYt1);:::xqtn))

8. else

12: s=s+1
13: end repeat
14: compute approximate control with equation (14)

3. Stochastic Optimal Control of a Multi-Agent System

We now turn to the issue of optimally controlling a multi-agent system of n agents. In
principle, the theory developed for a single agent straightorwardly generalizes to the multi-
agent situation. Each agenta has ak-dimensional statex, that satis es a dynamics similar
to (1):

dXxa(t) = ba(xa(t);t)dt + ua(x(t);t)dt + adwi(t); (15)
in accordance with assumptions 1, 2 and 5 in the introduction Note that the control of
each agent not only depends on its own statecy, but on the joint state X = (X1;:::;Xpn)
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of the system. The system has a joint cost function similar to(2), depending on the joint

X0 Z1 1
CU(xt)= EYy (x(T)+ d  SkRaua(x(); JK*+ V(xa( ); )

a=1 ¢

The expectation E}., is taken with respect to the probability measure under whichx(t) is
the solution to (15) given the control law u and the condition that x(t) = x. The cost is a
combination of the joint end cost (x(T)), which is a function of the joint end state x(T),
and an integral of instantaneous costs. The instantaneousast factorizes over the agents,
in accordance with assumption 5 in the introduction. For eat agent, it is a sum of a state
dependent term V (x4( ); ) and a control dependent term %kRaua(xa( ); )K?, similar to
the single agent case. In accordance with assumption 4 in thimtroduction, the control cost
of each agent is related to the noise in the agent's dynamicsia the relation

a ; = (RZRa) L

where is the same for each agent. The joint cost function is minimized over the joint
control, yielding the optimal expected cost-to-goJ. The optimal expected cost-to-go is
expressed in terms of a di usion process via the relation

J(x;t) = logZ(x;t);
where Z (x;1) is the joint expectation value
" 7 I#
1 1 X =T
Z(x;t)= Exx exp — (¥(T)) - dV(ya(); ) (16)
a=1 !
and they1(t);:::;yn(t) are di usion processes, withy = (y1;:::;yn) and y(t) = x, satisfying
uncontrolled dynamics
dya( )= ba(ya( ); )d + adwa( ); a=1;:::;n: (17)
The multi-agent equivalent of the optimal control (9) reads
Ua(X;t) = a2 a @, logZ(x;t): (18)

We will now show that the optimal control of an agent can be understood as an expected
control, that is, an integral over target states y, of a transition probability to the target
times the optimal control to that target. To this end, we writ e the expectation (16) as an
integral over the end state:

Z %
Z(it)=  dye ~ O Za(ya Tixait); (19)
a=1
where the Z,(ya; T; Xa;t) are implicitly de ned by
z (2T
dYaZa(Ya; TiXa; ) (Ya) = Exat f(ya(T))exp = t d V(ya( ); )
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for arbitrary functions f . Substituting (19) into (18) yields
Z

Ua(X;t) = dyapa(YajX;t) Ua(Ya; Xa; t) (20)

where
Ua(YaiXa;t) = a a @, 109Za(Ya; T;Xa;t) (21)

is the optimal control for agent a to go from state x, at the current time t to state y, at
the end time T, and pa(Yyajx;t) is a marginal of

- 1 1 (y) v CTeyw )
plyjx; t) = me Za(Ya; T;Xa; t):
! a=1

3.1 Discrete End States

The agents have to ful ll a task of arriving at a number of targ et states at the end time
according to an initially specied way: for example, they should all arrive at the same
target, or they should all arrive at di erent targets. The ta rgets are considered regions

G1;:::;Gn in the state space, and the end cost is modeled as follows:
Ly X 1 o (Vaisa)
e = W(S) Wa(Ya;Sa);  Wa(Ya;Sa) = € = 2V (22)
S a=1
where the sum runs over assignments = (S1;:::;Sp) of agentsa to regions Gs,. a(Ya; Sa)

is a cost function associated to regiorGs,, returning a low cost if the end state y, of agent
a lies in the region Gs, and a high cost otherwise.w(s) is a weight, grading the assignments
s and thereby specifying the joint task of the agents. Assignrents that result in a better
ful lment of the task have a higher weight. In a situation wh ere all agents have to go to
the same target, for example, a vectors that assigns each agent to a di erent target will
have a low weightw(s).

With this choice of end cost, equation (19) factorizes as

X Y
Z(x;t)=  w(s)  Za(saiXa;t)
S a=1
where Z
Za(Sa;Xa;t) = dyaZa(Ya; T;Xa; t)Wa(Ya; Sa): (23)
The interpretation of Zj(sa; Xa;t) is that logZa(sa; Xa;t) is the expected cost for agent

a to move from x, to target s;. The optimal control (20) of a single agenta becomes

X0
Ua(x;t) = P(SajX; t)Ua(Sa; Xa; t); (24)

Sa=1

where
Ua(Sa; Xa;t) = a a @, l0gZa(Sa; Xa;t) (25)
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is the control for agent a to go to target s;, and the weights p(sajx;t) are the single-agent

marginals X
P(Sajx;t) = p(sjx;t) (26)
SNSa
of the joint distribution
. Y
P = 76y Zalsaixaid: (27)

The weight p(srj,x;t)equals the ratio exp 1J(s:x;t) =exp 1J(x;t) , whereJ(s:x;t) =
logw(s) 2:1 logZa(sa; x;t) is the optimal expected cost-to-go in case the agents
have predetermined targets that are speci ed by the assignrant s; an assignment of agents
to targets that has a low expected costJ(s; x;t) will yield a high weight p(sjx;t), and
the associated single-agent to single-target controlsi;(Sa; Xa; t) will be predominant in the

optimal controls ua(Xx;t).

3.2 Metropolis-Hastings Sampling in Multi-Agent Systems

In general, both the controls us(sa; Xa;t) and the marginals p(sajx;t) in the optimal con-
trol (24) do not have a closed form solution, but have to be inérred approximately. The
controls us(Sa; Xa;t) can be approximated by the Metropolis-Hastings sampling dscussed
in Section 2.2. Inference of the marginals involves the infence of the path integral formu-
lations of the Z,(sa; Xa; t):

z z

i 1 LS (xa(to);xa(tn )ito;sa)
; , — T allo),.-+ allN ),l0,°a
Za(Sa; Xa; t) |I‘!’Llo p—det(z o dxa(t1) dxa(tn)e

with x4(tg) = Xa, to =t and

S(Xa(to);:::;Xa(tn);to;Sa) =  a(Xa(T); sa)

K 1 K 1 . .
+ "V (Xa(ti); ti) + % Ra Xa(t'”)" Xa(ti) ba(Xa(ti): ;)

i=0 i=0

The value of Z4(sa; Xa;t) is generally hard to determine (MacKay, 2003). Possible aproxi-
mations include the maximum a posteriori (MAP) estimate and the inclusion of the variance
in the sample paths. A third approximation is to take the average of the path costs as an
estimate of logZa(sa; Xa;t); this means that the entropy of the distribution in the path
integral is neglected.

4. Graphical Model Inference

The additional computational e ort in multi-agent control ¢ ompared to single-agent control
lies in the computation of the marginals p(sajX;t) of the joint distribution p(sjx;t), which
involves a sum over allm™ assignmentss. For small systems this is feasible, but for large
systems this is only so if the summation can be performed e cently. An e cient approach
is provided by graphical model inference, which relies on aakctor graph representation of
the joint distribution.
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Figure 1: Example of a factor graph for a multi-agent system offour agents. The couplings
are represented by the factorsA, with A = f1;4g;f1; 2g;f 2; 4g; f 3; 4g; f 2; 3.

4.1 A Factor Graph Representation of the Joint Distribution

The complexity of the joint distribution is in part determin ed by the weightsw(s) in the end
cost function (22). These weights determine how the agentsansider the states of the other
agents. In the most complex case, the way one agent takes thease of another agent into
account will depend on the states of all the other agents. Thesituation is less complicated
when an agent considers the states of some agents indepentlgrof the states of the others.
This means that the joint end cost has a factorized form:

Y
w(s) = Wa (Sa); (28)
A

the A being subsets of agents. This structure is represented grécally by a so-called factor
graph (Kschischang, Frey, & Loeliger, 2001). See Figure 1 fan example. The agentsa and
the factors A are nodes in the factor graph, represented by circles and sques respectively,
and there is an edge between an agerd and a factor A when a is a member of subsetA,
that is, when wa in the factorization of w depends ons,. From (27) it is immediate that

the joint distribution p(sjx;t) factorizes according to the same factor graph.

4.2 The Junction Tree Algorithm

E cient inference of the distribution p(sjx;t) by means of its factor graph representation is
accomplished by using the junction tree algorithm (Lauritzen & Spiegelhalter, 1988). The
complexity of this algorithm is exponential in the induced tree width of the graph. A small
tree width can be expected in systems where the factor graphsisparse, which is the case
when the agents take the states into account of a limited numler of other agents. This
implies that multi-agent systems with sparse graphs and a linited number of targets are
tractable (Wiegerinck et al., 2006). The factor graph in Figure 1 is an example of a sparse
graph. On the other hand, should each agent take the state ofach other agent into account,
then the junction tree algorithm does not really help: the underlying factor graph is fully
connected and the tree width of the graph equals the number ofigents in the system.

Exact computation of the optimal control will be intractabl e in large and complex multi-
agent systems, since the junction tree algorithm requires ramory exponential in the tree
width of the factor graph. Instead we can use graphical modelapproximate inference
methods to approximately infer the marginals (26). We will proceed with a discussion of
two such methods: naive mean eld (MF) approximation (Jordan, Ghahramani, Jaakkola,
& Saul, 1999) and belief propagation (BP) (Kschischang et al, 2001; Yedidia, Freeman, &
Weiss, 2001).
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4.3 Naive Mean Field Approximation

Our starting point is to note that the optimal expected cost-t 0-go is a log partition sum,
also known as a free energy. Consider the variational free engy

X
F(@= h logwig HogZaiq, H (0);

a

where h ig and h i, denote expectation values with respect to distribution g and marginals
0, respectively, andH (q) is the entropy of g

X
H(q) = q(s) log q(s):

The optimal expected cost-to-go equals the variational free mergy minimized over all distri-
butions g. In the naive mean eld approxim@tion one considers the varational free energy
restricted to factorized distributions q(s) = =, th(Sa). The minimum

JvE = in F
MF q:naqua (a)

is an upper bound for the optimal expected cost-to-gaJl, it equals J in case the agents are
uncoupled. F has zero gradient in its local minima, that is,

0= @RA(s)  th(sn))
@g(sa)

with additional constraints for normalization of the distr ibutions g,. Solutions to this set
of equations are implicitly given by the mean eld equations
Za(Sa)Wjsai q

s0-1 Za(s9)wjsdiq

a=1;::::n (29)

(30)

Ga(sa) = P

where hwjsa,i q is the conditional expectation of w under q given sj:
X Y

S1;snhsy  a%a

The mean eld equations are solved by means of iteration; thé procedure results in a
convergence to a local minimum of the free energy.

The mean eld approximation of the optimal control is found by taking the gradient
with respect to x of the minimum Jyr of the free energy. This is similar to the exact case
where the optimal control is the gradient of the optimal expected cost-to-go, equation (18).
Using (29), we nd

1 X
Ua(X;t) = = a4 a” @, Imr(Xt) = Ca(Sa)Ua(Xa;t; Sa):

Sa

Similar to the exact case, it is an average of the single-agenb single-target optimal controls
Ua(Xa;t; Sa) given by equation (25), where the average is taken with respect to the mean
eld approximate marginal gy(s,) of agent a.
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4.4 Belief Propagation

In belief propagation, we approximate the free energy by theBethe free energy, and we
minimize the latter. The Bethe free energy is de ned by

X X X X
Fgethe (fOa; 0a Q) = h logwaig, h logZaig, H(ga) + (na 1H(G):

A a A a
(31)
It is a function of “beliefs' gz(sa) and da(sa), which are non-negative normalized functions
that satisfy consistency relations:
X
8a8A 3 a: da(sa) = Ga(sa):

SAna

The H(gy) and H (ga) are the entropies of the beliefsg, and ga, hy denotes the number of
neighbors of nodea in the factor graph.

Belief propagation is an algorithm that computes the belieg (Kschischang et al., 2001).
In case the joint distribution p has a factor graph representation that is a tree, belief prop
agation will converge to beliefs that are the exact marginas of p, and the Bethe free energy
of these beliefs equals the optimal expected cost-to-gd. If the factor graph representation
of p contains cycles, we may still apply belief propagation. Yedlia et al. (2001) showed
that the xed points of the algorithm correspond to local ext rema of the Bethe free energy.
In particular, more advanced variations on the algorithm (Heskes, Albers, & Kappen, 2003;
Teh & Welling, 2001; Yuille, 2002) are guaranteed to converg to local minima of the Bethe
free energy (Heskes, 2003).

We nd the BP approximation of the optimal control by taking t he gradient of the
minimum Jgethe Of the Bethe free energy:

1 X
Ua(X;t) = = a4 a2 @,Jgethe(X;t) = Oa(Sa)Ua(Xa;t; Sa);

Sa

with the us(Xa;t;sa) given by equation (25). Similar to the exact case and the mea eld
approximation, the BP approximation of the optimal control is an average of single-agent
single-target optimal controls, where the average is taken vth respect to the belief g,(sa).

5. Numerical Results

In this section, we present numerical results of simulatios of optimal control in multi-

agent systems. The problem of computing the optimal contra$ (24) consists of two parts:
the inference of the single-agent to single-target controls 45), and the inference of the
marginals (26) of the global distribution over agent to target assignments. When the dy-
namics are linear, and the instantaneous cost¥ are zero, the single-agent to single-target
controls can be given in closed form. Such multi-agent systesitherefore only know the issue
of infering marginal distributions. In Section 5.1 we will consider multi-agent systems of
this kind. Section 5.2 deals with the general problem of infeng the optimal controls when

the dynamics are nonlinear and the instantaneous cost¥ are nonzero. In both sections
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Figure 2: Two agents, with noise and control in their positions, need to reach target loca-
tions at -1 and 1 at end timet = 2, each agent at a di erent target location. The
positions (a) and expected targets (b) over time.

the joint end cost is given by equation (22), with

Yy
w(s) = Wa:b(Sa; Sh);
a;b

Wa:b(Sa; Sp) = €xp — saisp (32)

1 . .
Wa(Ya;Sa) =€xp  — a(YaiSa) a(Ya: Sa) = 5l¥a sal s (33)

where c determines the coupling strength between the agents, and th
states.

are the target

a

5.1 Linear Dynamics

We begin with an illustration of optimal control by showing a simulation of an exactly
solvable stochastic multi-agent system. In this system of tvo agents in one dimension, the
agents satisfy dynamics (15) withb, equal to zero. There are two target statesx = ;= 1
and x = , = 1. The task of the agents is for each one to go to a di erent taget. The
instantaneous costsV in the cost function are zero, and the end cost function is gien by
equations (22), (32) and (33) with =20 and c= 4. The negative sign of the coupling
strength c implies a repulsion between the agents. The control cost pameter R equals 1,
the noise level ? lies at 0:5. The agents start at x = 0 at time t = 0, the end time lies at
T = 2. To prevent overshooting the targets, udt should be small compared to the distance
to the target states. This is done by choosingdt = 0:05(T t+ OF',OS).

Figure 2 shows the agents' positions and expected targets ¢ _; ., p(Sajx;t) s, over
time. We see that up to time t = 1, the agents have not decided to which target each of
them will go, and they remain between the two targets. Then, dter t = 1, a nal decision
seems to have been made. This delayed choice is due to a symmyebreaking in the cost-to-
go as time increases. Before the symmetry breaking, it is bé&tr to keep options open, and
see what the e ect of the noise is. After the symmetry breakirg, time is too short to wait
longer and a choice has to be made. This phenomenon is typic&r multi-modal problems.

We proceed with a quantitative comparison of the di erent control methods that arise
from the exact or approximate inferences of the marginals othe joint distribution (27).
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Figure 3: The deviation from the optimal cost (a) and the required CPU Time in seconds
(b) as functions of the noise. The lines represent exact ( ), Greedy (), MF
(] yand BP () control.

The example we consider is a multi-agent system of = 18 agents in a two-dimensional
state space with zero instantaneous costs( = 0) and no autonomous dynamics @, = 0).
The end cost function is given by equations (22), (32) and (33 The two targets are located
at 1=( L0and »,=(1;0). =20andc= 0:5. The control cost matrix R equals
the identity matrix. The agents start in (0 ;0) at time t = 0, the end time lies at T = 2,
and time steps are of sizedt = 0:05(T t +0:05).

The approximations are naive mean eld approximation and bdief propagation, as de-
scribed in Section 4, and greedy control. By greedy control @ mean that at each time step
each agent chooses to go to its nearest target. We include thiapproximation because it is
simple and requires little computation time, and for those reasons it is an obvious choice
for a naive approximation. Because a greedy control policy aglects the choices of the other
agents, we expect that it will give an inferior performance.

For each approximation, Figure 3(a) shows the cost under theapproximate (optimal)
control minus the cost under exact (optimal) control, averaged over 100 simulations, and for
di erent noise levels. The same noise samples were used fdnd approximate and the exact
control. We see that both naive mean eld approximation and belief propagation yield
costs that on average coincide with the cost under exact comol: the average cost di erence
under both methods does not signi cantly di er from zero. Greedy control, on the other
hand, yields costs that are signi cantly higher than the cogs under exact control; only in
the deterministic limit does it converge to the cost under exact control, when both controls
coincide. Figure 3(b) shows the CPU time required for the catulation of the controls under
the di erent control methods. This is the average CPU time of an entire simulation. Each
simulation consists of 73 time steps, and at each time step th control is calculated for each
agent. We observe that greedy control is at least 10 times fder than the other methods,
and exact control is nearly 100 times more time consuming tha the other methods. Belief
propagation gives a performance that for all considered nake levels is a bit quicker than the
naive mean eld approximation, but this may be the result of implementation details. We
have also done simulations with attractive couplingc = 0:5; this returned results similar to
the ones with repulsive couplingc= 0.5 that we presented here.
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Figure 4: The cumulative control cost over time, in case of a song repulsive coupling
c= 2 and a low noise level 2 = 0:1. The curves represent exact (), MF
(] ), and BP control ().

Although Figure 3 suggests that belief propagation and naie mean eld approximation
perform equally well, this is not always the case, since forartain combinations of the noise
level and the coupling strength the BP control is more costlythan MF control and exact
control. The origin of this di erence lies in the symmetry br eaking, which tends to occur
later under BP and earlier under MF when compared to exact cotrol. We observe this
in Figure 4, which shows the cumulative cost over time for thecontrol methods in the
multi-agent system, now with a coupling strengthc= 2 and a xed noise level 2 =0:1.
The cumulative costs are averages over 100 simulations. Theost under MF control lies a
bit higher than the cost under exact control, whereas the cosunder BP control initially
is lower than the cost under the other control methods, but att = 1:7 it starts to increase
much faster and eventually ends up higher. Including the endcosts, we found total costs
26:13 0:12 under exact control, 2619 0:12 under MF control, and 355 0:4 under BP
control. This suggests that it is better to have an early symmnetry breaking than a late
symmetry breaking.

The time required for computing the control under the various methods depends on the
number of agents in the multi-agent system. Figure 5 shows thaequired CPU time as a
function of the number of agentsn in the two-dimensional multi-agent system considered
above. We see that the exact method requires a CPU time that icreases exponentially
with the number of agents. This is what may be expected from tke theory, because the
exact method uses the junction tree algorithm which has a corplexity that is exponential
in the tree width of the underlying graph, i.e., exponential in n. For the greedy method,
the CPU time increases linearly with the number of agents, wlch is in agreement with the
fact that under greedy control there is no coupling between he agents. The required CPU
time increases polynomially for both the mean eld approximation and belief propagation.

5.2 Nonlinear Dynamics

We now turn to multi-agent systems with nonlinear dynamics. To control these systems, we
must approximate both the graphical model inference as welbs the single-agent to single-
target control problem (12). We consider a multi-agent systen in which the agents move in
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CPU Time

Figure 5: The required CPU time in seconds for the calculatio of the controls at a di erent
number of agents. Exact (), greedy (), MF (| ), and BP control ().

two dimensions and have a four-dimensional state that is spe@d by the agents location
(Xa;Ya), its forward velocity v, and its driving direction ' 5. The dynamics of each agent
is given by the equations

dxa = vgcos' ,dt
dya = vasin' gdt
dva = updt+ Ldw,
da = !ladt+ ad g

The rst two equations model the kinematics of the agent's pacsition for a given forward

velocity and driving direction. The last two equations desaibe the control of the speed and
the driving direction by application of a forward acceleration u; and an angular velocity

I 2. The noise in the control is modeled by the standard normal Wener processesv, and

a and the noise level parameters 5 and 5. Note that the noise does not act in dimensions
other than those of the control. Although the control space ounts less dimensions than
the state space, the example does t in the general frameworkwe refer to Appendix C for

details.

We look at two di erent tasks. The rst task is that of obstacl e avoidance in a multi-
agent system of three agents. The agents each have to reacheof three target locations and
avoid any obstacles in the environment. Each target locatio should be reached by precisely
one agent; we model this with an end cost function, given by egations (22), (32) and (33),
with =1 andc= 0:5. The targets are located at (19 15), (45; 12) and (26, 45), and the
agents should arrive with zero velocity. The control cost mdrix R is the identity matrix.

=0:1. The instantaneous costV equaled 1000 at the locations of the obstacles, and zero
otherwise. The agents start at timet = 0, the end time lies at T = 20, and time steps dt
are of size @. The starting locations of the agents are (1831), (25;12) and (39 33), and
the agents start with zero velocity. The sample paths are disrete time paths in the two-
dimensional space of the forward velocityv and the driving direction ' . They are speci ed
by their values at timestj = t+i",i=0;:::;N 1, with " = H and N =7, the value
at time tg equals the current state of one of the agents, and the value atime ty equals
one of the target end states. The control for each agent to onef the targets is computed
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Figure 6: Three agents, with noise and control in their forwad velocities and driving direc-
tions, have to reach three targets (marked by “X') in an envionment containing
also a number of walls. Each agent starts at a di erent location (marked by "O")
and with zero forward velocity, and each agent should arriveat a di erent target
with zero velocity without hitting the walls. (a) The trajec tories that the agents
followed to reach the targets. (b) Sample paths.

with a Metropolis-Hastings sampling of paths, according to Sibsection 3.2. The proposal
distribution is a 2N -dimensional Gaussian, centered around the agent's currenplanned
path, and with a variance equal to the noise level in the ageris dynamics. The expectation
values Z,(sa; Xa; t) are estimated by the average costs of the sample paths. We ka also
tried MAP estimation of Z;(sa; Xa;t) and an inclusion of the variance in the sample paths,
but the former did not show a signi cant di erence, and the la tter returned estimates that
uctuated heavily. Figure 6(a) shows the environment and the trajectories of the agents
from their starting locations to the targets. Each agent manages to avoid the obstacles and
arrive at one of the targets with zero velocity, such that ead target is reached by a di erent
agent.

The second task is that of coordination in the multi-agent sysgem as shown in Fig-
ure 7(a). In this system there are no instantaneous costs\( = 0). The agents have to move
from their initial positions to a number of target locations. They should arrive at these
locations with zero velocity and horizontal driving direction. There is an equal number
of agents and target locations, and each agent has to reach a drent target. The initial
locations are aligned vertically, and so are the target locdons, but there is a vertical dis-
placement between the two. Thus the agents have to coordina their movements in order
to reach the targets in a satisfactory way.

The agents start at time 0, the end time lies at 100, and they m&e time steps of size
dt = ﬁ with N =7, until dt < 0:01. At each time step the controls are computed by
a Metropolis-Hastings sampling of paths and a naive mean eldapproximation to infer the
marginals pa(sajx;t) that weigh the single-agent to single-target controls, equéons (24)
and (26). The sample paths were discretized into seven equistant time points from the
present time to the end time. The proposal distribution was taken a Gaussian, which was
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centered around the agent's current planned path and with a ariance equal to the noise
level in the agent's dynamics. Figure 7(a) shows an examplefdhe trajectories of a system
of 10 agents. It was obtained with 10 sample paths per agent-tayet combination. We
observe that the agents reach the targets, and that each targt is reached by precisely one
agent, as required. Due to the noise in the second order dynaics of the agents, it takes
the agents less e ort to approach a target than to remain there, since the former allows
exploitation of the noise while the latter requires a constant correction of the state changes
caused by the noise. The result is that the trajectories of tlke agents are more curved and
elongated than what would be expected in the situation withaut noise. The simulation was
carried out as well for a larger number of agents. Figure 7(bshows the required CPU time
as a function of the number of agents, both under exact and MFnference of the marginals
of the agents. Note that the complexity of the graphical modé inference problem scales as
n", with n the number of agents. Exact inference using the junction tre algorithm was
only feasible forn < 10.

6. Discussion

We studied the use of graphical model inference methods in djmnal control of stochastic
multi-agent systems in continuous space and time where the amts have a joint task to
reach a number of target states. Rather than discretizing, @ is commonly done and typically
makes large systems intractable due to the curse of dimengiality, we followed the approach
developed by Wiegerinck et al. (2006), modeling the systemni continuous space and time.
Under certain assumptions on the dynamics and the cost fundon, the solution can be given
in terms of a path integral.

The path integral can be computed in closed form in a few speal cases, such as the
linear-quadratic case, but in general it has to be approximaed. This can be done by a
variety of methods. The method we considered in this paper isfMCMC sampling. The
dimension of the sample paths was kept lowN = 7) to limit the curvature of the sample
paths. The gain of limiting the curvature is that the varianc e in the samples is reduced
and less samples are needed. By limiting the curvature, hower, we introduce a bias. In
addition, in the presence of obstacles insu cient curvature would make the sampler return
sample paths that run through the obstacles. We believe thatmore advanced MCMC
methods such as Hybrid MC sampling (Duane, Kennedy, Pendlain, & Roweth, 1987) and
overrelaxation (Neal, 1998) can improve the inference of th path integrals.

Apart from MCMC sampling, there are other approximation met hods that one could
consider, such as the Laplace approximation or a variationeapproximation. The Laplace
approximation becomes exact in the noiseless limit and codl be useful in low noise regimes
as well. The variational approximation approximates the path integral (11) by a Gaussian
process (Archambeau, Opper, Shen, Cornford, & Shawe-Taylgr2007), and could be partic-
ularly useful in the high noise regime. A drawback of the varational approach, however, is
that it cannot be straightforwardly applied to situations w ith in nite instantaneous costs,
like hard obstacles in the environment that we considered hee.

Wiegerinck et al. (2006) showed that for systems that are su ciently sparse and in which
the single-agent to single-target controls can be determinedn closed form, e.g. linear-
guadratic control with time-independent coe cients, exact inference can be achieved using
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the junction tree algorithm. Van den Broek, Wiegerinck, and Kappen (2007) considered
a multi-agent system with second-order dynamics, linear autaomous dynamics and zero
instantaneous costs, and showed that graphical model infemce by naive mean eld ap-
proximation signi cantly outperformed a greedy inference. Here we showed that a close to
optimal result can be achieved as well in dense systems, ugjrgraphical model approximate
inference methods. The approximation methods that we consiered were naive mean eld
approximation and belief propagation. We demonstrated thér performances in an example
system where exact inference is signi cantly more time consming. Mean eld approxima-
tion showed to work very well, returning costs for control equal to the optimal ones, belief
propagation performed similarly. Below a certain value forthe ratio of coupling strength
to the noise level, the symmetry breaking in the control proess takes place earlier under
mean eld approximation when compared to exact inference, ad later under belief prop-
agation. An early symmetry breaking does not increase the csts for coordination much,
however, a late symmetry breaking does, making the performace under belief propagation
suboptimal.

Some variations on the considered case are also possible it the general framework.
Wiegerinck, van den Broek, and Kappen (2007) discuss situabns where agents sequentially
visit a number of targets, and where the end time is not xed. It focusses on prefered
trajectories in state space over time, instead of preferedtates at the end time; this is
achieved by modeling the path cost in a way similar to how we hge modeled the end cost.
The problem where agents have to intercept a moving target wh noisy dynamics is also
covered there.

The control formalism developed by Kappen (2005a, 2005b) ath applied to multi-agent
coordination by Wiegerinck et al. (2006) and in this article, demands that the noise and
the control act in the same dimensions. One way to satisfy thé constraint is to assume
that the agents are identical. In addition, the single agentdynamics should be such that
the noise and the control act in the same dimensions. We saw tt for the two-dimensional
second order system in Section 5.2 this condition was sati®d in a natural way. However,
in general one can think of examples of control problems wherequation (3) is violated. An
interesting future direction of research is to investigateto what extend the path integral
approach can be used as an approximation in such cases.

The paper assumes that the joint state space of the agents ishservable to all agents.
For large multi-agent systems, however, it will be more realstic that an agent only observes
its own state and the states of agents that are physically neeby. Our approach does not
directly apply to such situations. Depending on the joint task of the agents, it may be
a valid approximation to do optimal control in the sub-system consisting of those agents
that one agent does observe. If the task of the agents is to ai collisions, then it will be
su cient to consider only the states of agents that are nearhy, but if the task is to all go
to the same target then it will be crucial to have information about the states of all other
agents. A natural alternative to deal with partial observability is to describe the multi-agent
system by a decentralized POMDP (Seuken & Zilberstein, 2008 It is not clear however,
how such an approach would combine with the path integral fomalism.

The topic of learning has not been addressed in this paper, Huclearly is of great
interest. However, one could argue that a sampling procedw to compute the path integral
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corresponds to a learning of the environment. A discussionthis line of thought can be
found in (Kappen, 2007).

There are many more possible model extensions worthwhile @koring in future research.
Obvious examples are bounded controls, or a limited obser¢@n of the global state of the
system; these issues are already of interest to study in theirggle agent situation. Others
apply typically to the multi-agent situation. In the context of physical agents, introduc-
ing penalties for collisions between agents would become leant. Typically, these types
of model extensions will not have a solution in closed form, ad will require additional
approximate numerical methods. Some suggestions are givery Kappen (2005a, 2005b).
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Appendix A. Stochastic Optimal Control

In this appendix we give a derivation of (5), (6) and (7), starting from (1), (2), (3) and
(4). Detailed discussions can be found in many works on stoastic optimal control, for
example that of Kushner (1967), Fleming and Rishel (1975), Feming (1978), ksendal
(1998), Stengel (1993), and Kappen (2005a, 2005b).

The optimal expected cost-to-goJ in a state x at time t is de ned as

J(x;t) = miun CY(x;t); (34)
where Z;
Clxt)= Exr  (x(T)+ d %kRU(X( ); K+ V(x(); ) (35)
t

is the expected cost given the control lawu. These are the equations (4) and (2) in the
main text. We rst show that J satis es the stochastic Hamilton-Jacobi-Bellman (SHJB)
equation

.1 1

@J = min EkRuk2+(b+ u)” @J + ST @) +V o (36)

with boundary condition J(x; T) = (x). This equation is derived in the following way. For
any moment in time  betweent and T it holds that

z 1
an Ex: CU(x(); )+ ds ékRu(x(s);s)k2+ V (x(s);s)

7 t

J(x;t)

min Eg; J(x(); )+ ds %kRu(x(s);s)k2+V(x(s);s)

t

The rst line follows from dividing the integral from t to T into two integrals, one from t
to and one from to T, and using the de nition of the cost function C, the second line
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follows from the de nition of J. A rewriting yields

z
0= min EY, IO ) tJ(X't) + 1t ds %kRu(x(s);s)k2+ V(x(s):5)
t
Taking the limit ! t we obtain
0= min EY, ‘3”(>;(tt)it) ' %kRu(x(t);t)k2+ VX():t) 37)

Subsequently, we apply todJ (x(t);t) the well known chain rule for di usion processes:

dJ(x(t);t) = % @‘D((:();t)dxi(t)_,_ Md“_ }X @J(x(t);1)

@ @t > ; 7@}(@3( dx;(t)dx; (t): (38)

It diers from the chain rule for deterministic processes in that it also contains a term
guadratic in dx. This extra term does not vanish, because the Wiener procesappearing in
the dynamics (1) has quadratic variation that increases lirear in time:

EY, [dwi(t)dw; ()] = dt: (39)

It follows that in expectation dx;(t)dx;(t) is equal to ( ~); dt. By substituting the dy-
namics (1) in (38), taking expectation values, and using (39, we obtain

@~1@X;tt)dt+(b(x;t)+ u(x;t))>@g;t)oIt+Tr >@civ(xxc;@tl

Substitution into equation (37) then yields equation (36).
The minimum of the right-hand side of equation (36) is given by

Exe [AI(x(1); )] = dt:

u= (R°R) '@u:

This is the optimal control.
The minimization in (36) is removed by inserting the optimal control. This yields a
nonlinear equation for J. We can remove the nonlinearity by using a logarithmic trandor-

mation: if we introduce a constant , and de ne Z(x;t) through J(x;t) = logZ(x;t),
then
1 1
Eu>R>Ru+ @l = > 27 2(@z) (R’R) '@z;
1 1 1
ST @) = 52 ‘@z)y @z 52 I @z

>

The terms quadratic in @Z vanish when and R are related via equation (3),

>= (R°R) L
When this relation is satis ed, the SHJB equation becomes

v b” @ %Tr @ z

= Hz (40)

@Z
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whereH a linear operator acting on the function Z.
Equation (40) must be solved backwards in time with boundary condition Z(x;T) =

e © M we present a solution in terms of a forward di usion process It is a common ap-
proach in the theory of stochastic processes to give solutits to partial di erential equations
in terms of di usion processes. The solution to equation (40 is the expectation value

1 1ZT
Z(x;t)= Ext exp  — (W(T)) - t dVviy() ) (41)

wherey( ) is a process that satis es the uncontrolled dynamics

dy( )= bly(); )d + dw ();

and y(t) = x. The expectation Ex; is taken with respect to the probability measure under
which y( ) satis es the uncontrolled dynamics with condition y(t) = x. It is clear that (41)
matches the boundary condition. To verify that it satis es e quation (40), we let

1ZT
I(t)y=exp — t dVvy() )

We see that
di(t) = }V(y(t); )l (t)dt:

Let f be the function f(y) = exp % (y) . We again use the chain rule for stochastic
processes and apply it tof (y(T  )) to nd

X @y(r ) 11X @ty )
dyT™ ) = ———=dyi(T )+ —————=dyi(T  )dy(T )
BN Zijm OVOY |
= @f(y((;y ) >( by(T )T )d + dw(T )
1 L@ (y(T )
2" @y@y

We then choose = 0 and d = dt and combine this identity with the previous one to
obtain

d (y(T)1 (1) fly(TM)di(t) + 1(Od (y(T))

HE (y(T) 1 (Odt+ @f (y(T))!I (t) dw (T):

Taking the expectation value on both sides makes the tern@f (y(T))1 (t) dw (T) disappear,
and the remaining part,

de[f (y(T)I(MI= HE (y(M)ID]dt

is just equation (40).
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Appendix B. The Path Integral Formulation

We are going to write the expectation value (7) as a path integal. Partitioning the time
interval from t to T into N intervals of equal length", t = to <ty <:::<ty =T, the
expectation value can be written as follows:
Z Z N 1
1
Z(x;t)y=  dxpiiro odxye 0N Z(Xie1tien X t) (42)
i=0

where xp = x and the Z(Xj+1;ti+1;Xj;tj) are implicitly de ned by

Z
1 ti+1
dXi+1 Z(Xj+1 s tivn; Xis ) f (Xi+2) = E f(Xj+1)eXp  — dV(y() ) yti)= X
ti
for arbitrary functions f. In the limit of in nitesimal ", the Z(Xj+1;ti+1;Xi;t;) satisfy
. 1
Z(Xi+1;tiv1; Xis i) = (Xis1stisajXisti)exp =V (xi; )" (43)

where (Xi+1;ti+1]X;t;) is the transition probability of the uncontrolled dynamics (8) to go
from (Xi;tj) to (Xj+1;ti+1) In space-time. The transition probability is given by

, 1 Yxisr o X b(Xi;t)")k?
Xi+1:tis1jXiiti)) = p———m——ex .
(Xi+1; ti+1 JXi5 i) p—det(Z 7 p 2

This follows from the dynamics
Xi+1  Xj = b(Xj;t)" + w

over the in nitesimal time interval and the observation tha t the Wiener processw is nor-
mally distributed around zero with variance ". Using equation (3), we may rewrite the
transition probability as
!
. 1 1 X Xi 2 "
(Xi+1 s tisn JXi5 ) = PWGXD > R 221 hixi;ti) C (44)
We obtain the path integral representation of Z(x;t) by combining equations (42), (43)
and (44) in the limit of " going to zero:

Z(x;t) = lim Z+(o; to) (45)
with Xg = X, tg = t,

1 Z Z

. _ . 1S (xo:muxn ito)
(Xo:to) =
Z+(Xo;to) p—det(z N dxq dxn e N

and

K 1 X1 4 . . 2

S (Xo;:iiiiXnsto) = (Xn)+ "V (Xi;ti) + "5 R M b(xi; ti)
i=0 i=0
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The optimal control is given by equation (9) and is proportional to the gradient of
logZ (x;t). Substituting the path integral representation (45) of Z(x;t), we nd that

Z Z e S (xoixn ito)
u(xoitg) = lim  dxq::: NP @,  —S(Xoiiiiixn;to)
" det2" 2N Z.(xto) i
7 Z
= lim  dxy:i o dxn p(Xo;iiiiXnto)u(Xo;::iiXn;ito)
where X1 X
U(Xo;:: XN t0) = > B(Xo;to)
and
e =S (Xo;:5X N sto)
p(Xo;::i;XN;to) =

on the rst two entries X and x; of the path.

Appendix C. Dimension Reduction

The derivation of the path integral in Appendix B was given for the case that both the
state and the control are k-dimensional. The particular case that only some dimension®f
the state are controlled can be deduced by taking the limit ofin nite control cost along the
dimensions without control. The control along the latter dimensions then becomes zero, as
can be seen from equation (5). The noise in these dimensions €qual to zero in accordance
with relation (3). In the path integral formalism the transi tion probabilities (44) then
reduce to delta functions along the dimensions without contol. The implications for the
MCMC sampling are that the dimension of the space in which to smple is also reduced,
since sampling has only to be performed in the dimensions whe there is noise.
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