
Online solution of the average cost Kullback-Leibler
optimization problem

Joris Bierkens
Radboud University Nijmegen

j.bierkens@science.ru.nl

Bert Kappen
Radboud University Nijmegen
b.kappen@science.ru.nl

Abstract

We introduce a stochastic approximation method for the solution of a Kullback-
Leibler optimization problem, which is a generalization of Z-learning introduced
by [Todorov, 2007]. A KL-optimization problem is Markov decision process with
a finite state space and continuous control space. Because the control cost has a
special form involving the Kullback-Leibler divergence, it can be shown that the
problem may be solved essentially by finding the largest eigenvector and eigen-
value of a non-negative matrix. The stochastic algorithm presented in this paper
may be used to solve this problem. It allows for a sound theoretical analysis and
can be shown to be comparable to the power method in terms of convergence
speed. It may be used as the basis of a reinforcement learning style algorithm for
Markov decision problems.

1 Introduction

A few years ago, Todorov [Todorov, 2007] introduced a novel method in stochastic optimal control,
to which we will refer as Kullback-Leibler optimization, where the optimal control may be deter-
mined essentially by computing the dominant eigenvector (i.e. the eigenvector corresponding to the
largest eigenvalue, also called the Perron-Frobenius eigenvector) of some non-negative matrix. The
computation of the dominant eigenvector is relevant in other areas of mathematical analysis and
optimization, see e.g. [Meyer, 2000], Chapter 8.

It is the goal of this paper to introduce a novel method to compute the dominant eigenvector. The
well-known power method (see e.g. [Horn, Johnson, 1990]) provides a convenient and powerful
way to compute this dominant eigenvector. For our purposes it has the disadvantage that we need
to have access to the entire non-negative matrix. In problems where the state space is large, this
may be problematic. Also a requirement for the power method is the knowledge of all the entries of
the matrix at initialization time of the algorithm, whereas we wish to think of these entries as being
obtained by observing a stochastic process.

To avoid the mentioned problems we introduce a stochastic approximation algorithm for the compu-
tation of the Perron-Frobenius eigenvector and corresponding eigenvalue. In Section 2 we discuss
the motivation for this algorithm, that we briefly sketched above. In Section 3, which may be read
independently of the preceding section, the stochastic approximation algorithm is described and
some theoretical results on convergence of the algorithm are provided. In Section 4 we show for a
particular example its convergence properties and compare it to the power method in terms of nu-
merical performance. Finally, in Section 5 we discuss some interesting questions that remain open,
in particular the possible extension to online control and reinforcement learning.

1

2 Motivation: Kullback-Leibler optimization

In this section we introduce the problem setting, which we will refer to as Kullback-Leibler opti-
mization or KL-optimization. For a more detailed introduction, see [Todorov, 2007].

Let t = 0, 1, 2, . . . denote time. Consider a Markov chain (xt)
∞
t=0 on a finite state space S =

{1, . . . , n} with transition probabilities q = (qij) called the uncontrolled dynamics, where qij =
Pq(xt+1 = j|xt = i). For simplicity we consider here the stationary case. Suppose for every
jump of the Markov chain, at every state i in S a cost c(i) is incurred. We wish to change the
transition probabilities in such a way as to minimize for example the total incurred cost (assuming
there exist absorbing states where no further costs are incurred) or the average cost per stage. For
deviating from the transition probabilities control costs are incurred equal to the Kullback-Leibler
divergence or relative entropy of the probability distribution Pp on the space of sample paths under
the changed transition probabilities p with respect to the probability distribution Pq corresponding
to the uncontrolled dynamics q. This is equivalent to saying that at time t a control cost of

KL(Pp(xt+1|xt)||Pq(xt+1|xt)) =

n∑
j=1

Pp(xt+1 = j|xt) ln

(
Pp(xt+1 = j|xt)
Pq(xt+1 = j|xt)

)
is incurred, in addition to the cost per stage c(xt).

If we write pij = exp(uj(i))qij , in the case of an infinite horizon problem, the corresponding
Bellman equation for the value function Φ is

Φ(i) = min
(u1,...,un)∈Rn

c(i) +

n∑
j=1

qij exp(uj)(uj + Φ(j))

 .

A straightforward computation, as in [Todorov, 2007], yields that the optimal uj(i) and value func-
tion Φ are given by

u∗j (i) = ln(z∗j /z
∗
i)− c(i), Φ(i) = − ln(z∗i), (1)

with z∗ ∈ Rn given implicitly by

z∗i = exp(−c(i))
n∑
j=1

qijz
∗
j ,

which may be written as z∗ = Hz∗, with Hij = exp(−c(i))
∑n
j=1 qij . This z∗ should be normal-

ized so that the value function agrees with the value 0 in the absorbing states. Similarly, in the case
where there are no absorbing states, the average cost per stage problem may be solved by finding
the solution z of λ∗z∗ = Hz∗, where λ∗ is the largest eigenvalue of H .

According to Perron-Frobenius theory of non-negative matrices ([Horn, Johnson, 1990], Theorem
8.4.4), if the uncontrolled Markov chain q is irreducible, there exists a simple eigenvalue λ∗ equal to
the spectral radius ρ(H), with an eigenvector z∗ that has only positive entries. Since λ∗ is a simple
eigenvalue, z∗ is unique op to multiplication by a positive scalar. These λ∗ and z∗, if normalized,
are called the called the Perron-Frobenius eigenvalue and eigenvector, respectively.

3 Stochastic approximation algorithm and theoretical results

The goal of our method is to find the Perron Frobenius eigenvector and eigenvalue, as explained in
the previous section. A straightforward way to find λ∗ and z∗ is using the power method, i.e. by
performing the iteration

zk+1 =
Hzk

||Hzk||
.

This assumes that we have access to the full matrix H . Our goal is to relax this assumption, and to
find z by iteratively stepping through states of the Markov chain using the uncontrolled dynamics q,
and using only the observations of the cost c(i) when we reach state i.

2

In this section, we let Q ∈ Rn be an irreducible, stochastic matrix, i.e. qij ≥ 0 for all i, j,∑n
j=1 qij = 1 for all i and for all i, j there exists a k such that (qk)ij > 0. Let R be a diagonal

matrix, with only positive entries on the diagonal. In the setting of the previous section, we would
have rii = exp(−c(i)). Let (γm) be a sequence of positive gain factors, satisfying

∑∞
m=1 γm =∞

and
∑∞
m=1 γ

2
m < ∞ for theoretical analysis. In practice, often a constant gain factor is used.

Throughout, we will write x(i) for the i-th component of a vector x.

3.1 Z-learning

[Todorov, 2007] introduces a stochastic approximation algorithm for our intended task, which we
refer to as Z-learning. The stochastic update rule of this algorithm for the vector z is given by

z(i) = (1− γm+1)z(i) + γm+1 exp(−c(i)z(j),
whenever a jump occurs from state i to state j. This algorithm works in case the spectral radius
of H is equal to 1. In the KL-control formulation this corresponds to the case where absorbing
states exists. If ρ(H) 6= 1, the vector z computed by this update rule actually decreases to zero or
increases to infinity. Even if z is normalized, it can be shown not to converge to the right solution if
the stationary distribution of the Markov chain is not flat.

Below we propose a stochastic algorithm that generalizes Z-learning to the case where ρ(H) 6= 1,
thus extending Z-learning to average cost per stage KL optimization.

3.2 Algorithm

Consider the following algorithm, similar in spirit to the Robbins-Monro algorithm ([Benveniste
et al., 1990], [Bertsekas, Tsitsikils, 1996], [Kushner, Yin, 2003]) and the Z-learning algorithm of
[Todorov, 2007]. It computes the Perron Frobenius eigenvector and eigenvalue synchronously. A
parameter α > 0 balances the updates to the eigenvector zm and the eigenvalue λm and is arbitrary
but influences the convergence speed.

1. Initialize by setting
z0 ← 1, λ0 ← 1, x0 ← 1.

2. Repeat, for m = 0, 1, 2, . . ., the updates
xm+1 ← random jump from state xm according to distribution Pq(xm+1|xm),

ζm+1 ← exp(−c(xm))zm(xm+1)/λm − zm(xm),

zm+1 ← zm,

zm+1(xm)← zm(xm) + γm+1ζm+1,

λm+1 ← λm + αγm+1zm(xm)ζm+1

until convergence.

We see that for every step of the algorithm, to update the current value of z and λ we just need
to know cost incurred, c(xm) and the information of the vector z on the current and next posi-
tion, z(xm) and z(xm+1), respectively. In this sense the algorithm only uses local information, as
opposed to the power method.

Note that if we would keep λm+1 fixed at the value 1, the algorithm is equal to Z-learning described
above.

3.3 Theoretical analysis of the algorithm

The space here is too limited to present the theoretical analysis in detail. A publication is being
prepared that will contain the detailed analysis [Bierkens, Kappen, 2011]. Here is a short overview.

Using the ODE method for analysing stochastic algorithms (see [Benveniste et al., 1990], [Bertsekas,
Tsitsikils, 1996], [Kushner, Yin, 2003]), it can be shown that as m → ∞, for a rescaled time
parameter t, the algorithm will behave as the deterministic ordinary differential equation (ODE){

d
dtz(t) = f(z(t), λ(t)),
d
dtλ(t) = g(z(t), λ(t)),

(2)

3

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) Grid world

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) Value function

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

iterations

e
rr

o
r

in
 z

Z−learning

generalized Z−learning

(c) Comparison between original Z-learning al-
gorithm and our generalization

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

iterations × nnz(H))

e
rr

o
r

in
 z

(d) Power method

Figure 1: Numerical experiment

with
f(z, λ) = D

(
1
λH − I

)
z, g(z, λ) = zT f(z, λ),

where H = RQ and D = diag(q1, . . . , qn), with (q1, . . . , qn) the unique invariant probability
distribution of the Markov chain with transition matrix Q. This ODE has the property that z(t)(i) ≥
0 for all i, and λ(t) ≥ 0, for all t ≥ 0, as long as the initial values are non-negative. The ODE
has a unique equilibrium (z∗, λ∗), with λ∗ and z∗ equal to the Perron-Frobenius eigenvalue and (a
rescaled version of) the Perron-Frobenius eigenvector of H .

Using linearization around the equilibrium and non-trivial matrix analysis, it can be shown that the
ODE is locally asymptotically stable if and only if the matrix D(H − λI − αPz∗) is strictly stable
for where α > 0, Pz∗ is the orthogonal projection along z∗. For some important special cases this
can be shown to be true, including the case where q1 = . . . = qn = 1

n , and the case whereH = HT .
It remains to establish stability in full generality.

We may conclude that for the mentioned cases, and we expect more generally, there is a unique stable
equilibrium point (z∗, λ∗) of the algorithm described in Section 3.2, equal to the Perron-Frobenius
eigenvector and eigenvalue of H .

4 Numerical results

Consider the example of a gridworld (Figure 1 (a)), with some walls. Suppose the uncontrolled
dynamics allow to move through the walls, but walking through a wall is very costly, say a cost of
100 per step through a wall is incurred. Where there is no wall, a cost of 1 per step is incurred.
There is a single state, in the bottom right, where no costs are incurred. The uncontrolled dynamics
q are such that with equal probability we may move left, right, up, down or stay where we are (but

4

it is impossible to move out of the gridworld). The value function for this problem can be seen in
Figure 1 (b). In order to be able to compare our algorithm to the original Z-learning algorithm, the
cost vector is normalized in such a way that λ∗ = 1, so that Z-learning converges on the given input.

The result of running the stochastic approximation algorithm, with a constant gain of γ = 0.05 is
portrayed in Figure 1 (c), where it is compared to Z-learning. This result may also be compared
to the use of the power method in Figure 1 (d). Here the following version of the power method is
used, in order to be able to give a fair comparison with our stochastic method.

zm+1 = zm + γ(Hzm − zm).

Note that for each iteration, the number of operations is (for sparse H) proportional to the number
of non-zero elements in H . In the stochastic method the number of operations per iteration is of
order 1. Comparing the graphs in Figure 1 (c) and (d), we see that our generalization of Z-learning
does not disappoint in terms of speed of convergence, with respect t Z-learning as well as the power
method. In the example it converges even slightly faster than Z-learning (executed with the same
random seed), but this should in our understanding be seen as a coincidince.

5 Open questions

Some problems remain open. First of all, the algorithm presented in this paper needs to be inves-
tigated in more detail. In particular the stability of the equilibrium point of the ODE (2) remains
to be established in full generality. Different variants of the update rules for λ and z can be imag-
ined, which may result in better stability of the algorithm. For example, the size of the updates to λ
depends on the size of z, which currently is not restricted, and may therefore result in instabilities.

On a more general level, an interesting open question is how this algorithm performs as an algorithm
that learns its optimal control while performing it at the same time. If the transition probabilities are
constantly updated using pij = exp(u∗i (j))qij , with u∗ as in (1), and pij is then taken as the new un-
controlled dynamics qij , we are effectively solving the problem of minimizing average cost where,
as time goes to infinity, the KL-divergence between the original uncontrolled dynamics and the
computed dynamics is allowed to approach infinity. This can be seen as a exploration-exploitation
algorithm, like Q-learning (see e.g. [Bertsekas, Tsitsikils, 1996]), where in the beginning the en-
vironment is explored according to probability distribution qij , but as the algorithm proceeds it
becomes more biased towards the optimal transition probabilities.

In case of a large state space, the stochastic algorithm can be used in case the matrix H is to big too
fit into the memory of a computer. It only needs the current observation. We have an extension of
the algorithm in mind that performs even when the state space itself is too large to fit in the working
memory. Basically this amounts to only updating the components of z that correspond to states we
have already seen. This algorithm needs to be developed and analysed further.

6 Summary

We have introduced a stochastic algorithm which may be used to solve Kullback-Leibler optimiza-
tion problems online which extends the results of [Todorov, 2007] to average cost per stage opti-
mization. It allows for rigourous stability analysis and performs well numerically. The method can
be extended to a reinforcement learning style exploration-exploitation algorithm, which will be the
subject of future research.

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement 231495.

References

A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approximations, volume 22
of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1990. Translated from the French by
Stephen S. Wilson.

5

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic programming, athena scientific. Belmont, MA, 1996.

J. Bierkens and B. Kappen. Z-learning for average cost per stage Kullback-Leibler control. In preparation,
2011.

R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1990. Corrected
reprint of the 1985 original.

H.J. Kushner and G.G. Yin. Stochastic approximation and recursive algorithms and applications, volume 35
of Applications of Mathematics (New York). Springer-Verlag, New York, second edition, 2003. Stochastic
Modelling and Applied Probability.

C. Meyer. Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2000.

E. Todorov. Linearly-solvable markov decision problems. Advances in neural information processing systems,
19:1369, 2007.

6

