
Dynamic Policy Programming with Function Approximation

Mohammad Gheshlaghi Azar Vicenç Gómez Hilbert J. Kappen

Radboud University Nijmegen
Geert Grooteplein Noord 21

6525 EZ Nijmegen Netherlands
m.azar@science.ru.nl

Radboud University Nijmegen
Geert Grooteplein Noord 21

6525 EZ Nijmegen Netherlands
v.gomez@science.ru.nl

Radboud University Nijmegen
Geert Grooteplein Noord 21

6525 EZ Nijmegen Netherlands
b.kappen@science.ru.nl

Abstract

In this paper, we consider the problem of
planning in the infinite-horizon discounted-
reward Markov decision problems. We pro-
pose a novel iterative method, called dy-
namic policy programming (DPP), which up-
dates the parametrized policy by a Bellman-
like iteration. For discrete state-action case,
we establish L∞-norm loss bounds for the
performance of the policy induced by DPP
and prove that it asymptotically converges
to the optimal policy. Then, we gener-
alize our approach to large-scale (continu-
ous) state-action problems using function ap-
proximation technique. We provide L∞-
norm performance-loss bounds for approxi-
mate DPP and compare these bounds with
the standard results from approximate dy-
namic programming (ADP) showing that ap-
proximate DPP results in a tighter asymp-
totic bound than standard ADP methods.
We also numerically compare the perfor-
mance of DPP to other ADP and RL meth-
ods. We observe that approximate DPP
asymptotically outperforms other methods
on the mountain-car problem.

1 Introduction

Many problems in robotics, operations research
and process control can be presented as dynamic
programming (DP) problem. DP is based on esti-
mation of some measures of the value of state (or
state-action) through the Bellman equation. For high-
dimensional systems or for continuous systems the

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

state space is huge and computing the value function
by DP is intractable. Common approaches to make
the computation tractable are function-approximation
approaches, where the value function is parameterized
in terms of number of fixed basis functions and thus re-
duces the Bellman equation to the estimation of these
parameters (Bertsekas and Tsitsiklis, 1996, chap. 6).

There are many algorithms for approximating the op-
timal value functions through DP (Szepesvari, 2009)
and approximate dynamic programming (ADP) meth-
ods such as approximate policy iteration (API) and
approximate value iteration (AVI) have been success-
fully applied to many real world problems. However,
there are counter-examples in the literature where
these methods fail to converge to a stable near-optimal
solution (Bartlett, 2003; Bertsekas and Tsitsiklis,
1996, chap. 6). The main reason is that these al-
gorithms switch the control policy without enforcing
any smoothness in the policy. This lack of smoothness
in the absence of accurate approximation of the value
function, can drastically deteriorate the quality of the
control policy since if the new policy is radically dif-
ferent than the previous one, it might be hard for the
algorithm to recover from the failure in policy improve-
ment. An incremental change of the policy may give
a better chance to recover from failed updates. One
of the most well-known algorithm of this kind is the
actor-critic method (AC), in which the actor relies on
the value function computed by the critic to guide the
policy search (Sutton and Barto, 1998, chap. 6). An
important extension of AC, the policy-gradient actor
critic (PGAC) (Sutton et al., 1999; Peters and Schaal,
2008; Bhatnagar et al., 2009) updates the parameters
of the policy in the direction of the (natural) gradient
of performance estimated by the critic. The drawback
of PGAC is that it suffers from local maxima since
PGAC is basically a local search algorithm.

In this paper we introduce a new method to com-
pute the optimal policy, called dynamic policy
programming (DPP). DPP includes some of the fea-



Dynamic Policy Programming with Function Approximation

tures of AC. Like AC, DPP incrementally updates the
parametrized policy. The difference is that DPP, in-
stead of relying on value function for the policy update,
uses the parameters of the policy to guide the policy
search with a Bellman-like recursion.

The basic idea of DPP is to control the size of pol-
icy update by adding a term to the value function
which penalizes large deviations from a baseline pol-
icy. By adding this penalty term, which is the rel-
ative entropy between some baseline policy and the
control policy, we replace the maximization over ac-
tions in the right-hand side of the Bellman equation
by a convex optimization problem. One can analyti-
cally solve this maximization problem and the solution
for the control policy is directly expressed in terms of
the value function, baseline policy and the specifica-
tion of the environment. The value function itself is
computed by a Bellman-like recursion. Iterating this
process, where the new baseline policy becomes the
just computed control policy, results in a double-loop
iteration on the policy and the value function. DPP
is the single-loop version of the preceding double-loop
iteration, in which we combine the value iteration and
the policy iteration in only one iteration on the action
preferences. We then prove that the policy induced by
the iterates of DPP asymptotically converges to the
optimal policy. Further, we establish L∞-loss bounds
on the performance of the policy induced by DPP and
generalize these bounds such that we can take the ap-
proximation error into account. We show that, for a
given sequence of approximation errors, these bounds
are tighter than previous bounds for ADP methods
such as AVI and API. We also give an example for
which the difference is dramatic.

This article is organized as follows. In section 2,
we present the notations which are used in this pa-
per. We introduce DPP and we investigate its con-
vergence properties in section 3. In section 4, we
demonstrate the compatibility of our method with ap-
proximation techniques. We also provide performance
guarantee for DPP in the presence of approximation
by generalizing the performance loss bounds of sec-
tion 3. Section 5, presents numerical experiments on
the mountain-car problem. In section 6 we briefly re-
view the related works. Finally, we discuss some of the
implications of our work in section 7.

2 Preliminaries

A stationary MDP is a 5-tuple (S,A,R, T, γ), where
S,A,R are, respectively, the set of all system states,
the set of actions that can be taken and the set of
rewards that may be issued, such that rass′ denotes
the reward of the next state s′ given that the current

state is s and the action is a. T is a set of matrices of
dimension |S × S|, one for each a ∈ A such that T a

ss′

denotes the probability of the next state s′ given the
current state s and the action a. γ ∈ (0, 1) denotes
the discount factor.

Assumption 1. We assume that for all 3-tuple
(s, a, s′) ∈ S ×A× S, the magnitude of the immedi-
ate reward, |rass′ | is bounded from above by Rmax.

A stationary policy is a mapping π that assigns to each
state s a probability distribution over the action space
A, one for each (s, a) ∈ S ×A such that πs(a) denotes
the probability of the action a given the current state
is s. Given the policy π, its corresponding value func-
tion V π denotes the expected value of the long-term
discounted sum of rewards in each state s, when the
action is chosen by policy π. The goal is to find a pol-
icy π∗ that attains the optimal value function V ∗(s),
such that V ∗(s) satisfies a Bellman equation:

V ∗(s) =

max
πs

∑

a∈A

πs(a)
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗(s′)) , ∀s ∈ S. (1)

Often it is convenient to associate values not
with states but with state-action pairs. There-
fore, we introduce the action-value functions: where
Qπ (s, a) denotes the expected value of the dis-
counted sum of rewards for all (s, a) ∈ S ×A,
when the future actions are chosen by the pol-
icy π. The optimal Q-function, Q∗ satisfies a
Bellman equation analogous to (1): Q∗(s, a) =
∑

s′∈S
T a
ss′(r

a
ss′ + γmaxπ

s′

∑

a′∈A
πs′(a

′)Q∗(s′, a′)).

3 Dynamic Policy Programming

In this section we derive DPP starting from the Bell-
man equation. We first show that by adding the rel-
ative entropy to the reward we can control the devia-
tions of the optimal policy from a baseline policy. We
then derive a double-loop approach which combines
value and policy updates. We reduce this double-loop
iteration to just a single iteration by introducing DPP
algorithm. We emphasize that the purpose of the fol-
lowing derivations is to motivate DPP, rather than
to provide a formal characterization. Subsequently, in
section 3.2, we theoretically investigate the asymptotic
behavior of DPP and prove its convergence.



Mohammad Gheshlaghi Azar, Vicenç Gómez, Hilbert J. Kappen

3.1 From Bellman Equation to DPP

Recursion

Consider the relative entropy between the policy π and
some baseline policy π̄:

gππ̄(s) = KL (πs‖π̄s)

=
∑

a∈A

πs(a) log

(

πs(a)

π̄s(a)

)

,
∀s ∈ S.

We define a new value function V π
π̄ for all s ∈ S which

incorporates g as a penalty term for deviating from
the base policy π̄ and the reward under the policy π:

V π
π̄ (s) ,

lim
n→∞

Eπ

[

n
∑

k=1

γk−1

(

rst+k
−

1

η
gππ̄(st+k−1)

)

∣

∣

∣

∣

∣

st = s

]

,

where η is a positive constant and Eπ denotes expec-
tation w.r.t. the state transition probability distribu-
tion T and the policy π. The optimal value function
V ∗
π̄ (s) = maxπ V

π
π̄ (s) then satisfies the following Bell-

man equation for all s ∈ S:

V ∗
π̄ (s) =

max
πs

∑

a∈A

s′∈S

πs(a)
[

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))−

1

η
log

πs(a)

π̄s(a)

]

(2)

Equation (2) is a modified version of (1) where, in ad-
dition to maximizing the expected reward, the optimal
policy π̄∗ also minimizes the distance with the baseline
policy π̄. The maximization in (2) can be performed
in closed form using Lagrange multipliers. Following
Todorov (2006), we state lemma 1:

Lemma 1. Let η be a positive constant, then for all
s ∈ S the optimal value function V ∗

π̄ (s) and for all
(s, a) ∈ S ×A the optimal policy π̄∗

s (a), respectively,
satisfy:

V ∗
π̄ (s) =

1

η
log

∑

a∈A

π̄s(a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))

]

(3)

π̄∗
s (a) =

π̄s(a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))

]

exp (ηV ∗
π̄ (s))

(4)

Proof. See appendix B in supplementary material.

The optimal policy π̄∗ is a function of the base policy,
the optimal value function V ∗

π̄ and the model data.

One can first obtain the optimal value function V ∗
π̄

through the following fixed-point equation:

V n+1
π̄ (s)

=
1

η
log

∑

a∈A

π̄s(a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV n

π̄ s′)

]

, (5)

and then compute a new policy π̄∗ using (4). π̄∗ max-
imizes the value function V π

π̄ . However, we are not,
in principle, interested in maximizing V π

π̄ , but in max-
imizing the value function V π. The idea to further
improve the policy towards π∗ is to replace the base
policy with the just newly computed policy of (4). The
new policy can be regarded as a new base policy, and
the process can be repeated again. This leads to a
double-loop algorithm to find the optimal policy π∗,
where the outer-loop and the inner-loop would consist
of a policy update, Equation (4), and a value function
update, Equation (5), respectively.

Two more steps lead to the final DPP algorithm. First,
note that one can replace the double-loop by direct
optimization of both value function and policy simul-
taneously using the following fixed point iterations:

V n+1
π̄ (s) =

1

η
log

∑

a∈A

π̄n
s (a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV n

π̄ (s′))

]

,

(6)

π̄n+1
s (a) =

π̄n
s (a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV n

π̄ (s′))

]

exp
(

ηV n+1
π̄ (s)

) . (7)

Further, we can define action preferences (Sutton
1996) Pn for all (s, a) ∈ S ×A and n > 0 as follows:

Pn+1(s, a) =
1

η
log π̄n

s (a) +
∑

s′∈S

T a
ss′

(

rass′ + γV n
π̄ (s′)

)

.

(8)
By comparing (8) with (7) and (6), we deduce:

π̄n
s (a) =

exp(ηPn(s, a))
∑

a′∈A

exp(ηPn(s, a′))
, (9)

V n
π̄ (s) =

1

η
log

∑

a∈A

exp(ηPn(s, a))). (10)

Now by plugging (9) and (10) into (8) we derive:

Pn+1(s, a) = Pn(s, a)− LηPn(s)+
∑

s′∈S

T a
ss′ (r

a
ss′ + γLηPn(s

′)) , (11)



Dynamic Policy Programming with Function Approximation

with the log-partition-sum operator LηPn(s) =
1
/

η log
∑

a′∈A
exp(ηP (s, a′)). (11) is one form of

the DPP equations. There is a more efficient and
analytically more tractable version of the DPP
equation, where we replace the log-partion-sum Lη by
the Boltzmann soft-max Mη defined by MηP (s) =
∑

a∈A

[

exp(ηP (s, a))P (s, a)
/
∑

a′∈A
exp(ηP (s, a′))

]

for all (s, a) ∈ S ×A.1 In principle, we can provide
formal analysis for both versions. However, the proof
is somewhat simpler for the Mη case, which we will
consider in the remainder of this paper. By replacing
Lη withMη we deduce the DPP recursion:

Pn+1(s, a) = OPn(s, a)

, Pn(s, a)−MηPn(s)+
∑

s′∈S

T a
ss′ (r

a
ss′ + γMηPn(s

′)) ,
(13)

with O is an operator defined on the action preferences
Pn. Therefore, instead of iterating equations (6) and
(7), the DPP algorithm updates action preferences via
the DPP operator using Equation (13). In the next
section we show that this iteration gradually moves the
policy towards the greedy optimal policy. Algorithm 1
shows the procedure.

Algorithm 1: (DPP) Dynamic Policy Programming

Input: Randomized action preferences P0(., .) and η
for n = 1, 2, 3, . . . , N do

for (s, a) ∈ S ×A do
Pn+1(s, a) := Pn(s, a)−MηPn(s)+

∑

s′∈S

T a
ss′ (r

a
ss′ + γMηPn(s

′));

end

end

for (s, a) ∈ S ×A do

πs(a) :=
exp(ηPN (s, a))

∑

a′∈A

exp(ηPN (s, a′))
;

end

return π;

3.2 Performance Guarantee

We provide the L∞-norm performance-loss bounds for
Qπn(s, a), the action-value function of the policy in-
duced by the nth iterate of DPP in theorem 1:

1Replacing Lη with Mη is motivated by the following
relation between these two operators:

MηP (s) = LηP (s) + 1/ηHπ(s), ∀(s, a) ∈ S ×A, (12)

with Hπ(s) is the entropy of the policy distribution π ob-
tained by plugging P in to (9). For the proof of (12) and
further readings see MacKay (2003, chap. 31).

Theorem 1. Let assumption 1 hold. Also, for keep-
ing the representation succinct, we assume that the
magnitude of both rass′ and the initial action prefer-
ences P0(s, a) are bounded from above by some con-
stant L > 0 for all (s, a) ∈ S ×A, then the following
inequality holds:

max
(s,a)∈S×A

|Qπn(s, a)−Q∗(s, a)| ≤ λn,

where:

λn = 4γ
(1− γ)2 log(|A|)/η + 2L

n(1− γ)5
+ 4γn L

(1− γ)2

Proof. See appendix C in supplementary material.

As an immediate corollary of theorem 1, we obtain the
following result:

Corollary 1. The following relation holds in limit:

lim
n→+∞

Qπn(s, a) = Q∗(s, a), ∀(s, a) ∈ S ×A.

In words the policy induced by DPP asymptotically
converges to the optimal policy π∗. One can also show
that, under some mild conditions, there exists a unique
limit for the action preferences under DPP in infinity.

Assumption 2. We assume that MDP has a unique
deterministic optimal policy π∗ given by:

π∗
s (a) =

{

1 a = a∗(s)
0 otherwise

, ∀s ∈ S,

where a∗(s) = argmaxa∈A Q∗(s, a).

Theorem 2. Let assumption 2 holds and n be a pos-
itive integer and let Pn(s, a) for all (s, a) ∈ S ×A be
the action preference after n iteration of DPP. Then,
we have:

lim
n→+∞

Pn(s, a) =

{

V ∗(s) a = a∗(s)
−∞ otherwise

, ∀s ∈ S,

Proof. See appendix D in supplementary material.

4 Dynamic Policy Programming with

Approximation

Algorithm 1 (DPP) can only be applied to small prob-
lems with few states and actions. One can scale up
DPP to large-scale state problems by using function
approximation, where at each iteration n the action
preferences Pn are the result of approximately apply-
ing the DPP operator, i.e., for all (s, a) ∈ S ×A:
Pn+1(s, a) ≈ OPn(s, a). The approximation error ǫn
is the difference of OPn and its approximation:

ǫn(s, a) = Pn+1(s, a)−OPn(s, a), ∀(s, a) ∈ S ×A
(14)



Mohammad Gheshlaghi Azar, Vicenç Gómez, Hilbert J. Kappen

In this section we provide results on the performance-
loss of DPP in the presence of approximation error.
We then compare L∞-norm performance-loss bounds
of DPP with the standard results of approximate value
and policy iteration. Finally, we introduce an algo-
rithm for implementing approximate DPP with linear
function approximation.

4.1 L∞-Norm Performance-Loss Bound for

Approximate DPP

The following theorem establish an upper-bound for
L∞-norm of performance loss of DPP in the presence
of approximation error. The proof is based on general-
ization of the bound that we established for DPP such
that it take care of the approximation error:

Theorem 3 (L∞ performance loss bound of approxi-
mate DPP). Let assumption 1 hold, |A| be the cardi-
nality of the action space A. Also define ǫn according
to (14). Further, for keeping the representation suc-
cinct, assume that rass′ , P0 and ǫk (for all k ≥ 1) are
uniformly bounded by some constant L > 0 and for
any positive integer n, and the L∞-norm of average
error at iteration n, ε̄n, is defined as follows:

ε̄n = max
(s,a)∈S×A

∣

∣

∣

∣

∣

1

n

n−1
∑

k=0

ǫk(s, a)

∣

∣

∣

∣

∣

(15)

Then the following inequality holds for the policy in-
duced by approximate DPP at iteration n:

max
(s,a)∈S×A

|Qπn(s, a)−Q∗(s, a)| ≤ λn,

where:

λn = 4γ
(1 − γ)2 log(|A|)/η + 4L

n(1− γ)5

+ 4γn L

(1 − γ)2
+

2γ

1− γ

n
∑

k=1

γn−kε̄k

Proof. See appendix E in supplementary material.

Taking the upper-limit yields in the following corollary
of theorem 3.

Corollary 2 (Asymptotic L∞-norm performance-loss
bound of approximate DPP). Assume that ε̄n is de-
fined from (15). Then, the following inequality holds:

lim sup
n→∞

max
(s,a)∈S×A

|Qπn(s, a)−Q∗(s, a)| ≤
2γ

(1 − γ)2
ε̄

(16)
where ε̄ = lim supn→∞ε̄n.

This bound is quite similar to the bound derived
by Bertsekas and Tsitsiklis (1996) for AVI and

those of the optimistic approximate policy iteration
(OAPI) (Thiery and Scherrer, 2010; Bertsekas and
Tsitsiklis, 1996, chap. 6):

lim sup
n→∞

max
(s,a)∈S×A

|Qπn(s, a)−Q∗(s, a)| ≤
2γ

(1− γ)2
εmax,

with εmax = lim supn→∞ max(s,a)∈S×A |ǫn(s, a)|. The
difference is that in (16) asymptotic sup-norm error
εmax is replaced by asymptotic sup-norm of average
error ε̄ for which one can easily show from general-
ized Phytagorean theorem that ε̄ ≤ εmax for a given
infinite sequence of approximation error {ǫ1, ǫ2, . . . }.
Therefore, ADPP can provide a tighter upper bound
on asymptotic performance than approximate value
iteration and optimistic policy iteration. To have a
better understanding of difference between these two
bounds we consider the following simple example:

Example 1. Consider a problem in which the se-
quence of approximation error {ǫ1:n} are i.i.d. sam-
ples of a bounded zero-mean random variable ǫ. Then
we obtain the following asymptotic bounds for approx-
imate DPP, OAPI and AVI:

Approximate DPP:

lim sup
n→∞

max
s∈S
a∈A

|Qπn(s, a)−Q∗(s, a)| ≤
2γ

(1 − γ)2
ε̄ = 0.

OAPI and AVI:

lim sup
n→∞

max
s∈S
a∈A

|Qπn(s, a)−Q∗(s, a)| ≤
2γ

(1− γ)2
εmax.

In words, the bounds suggest that approximate DPP
asymptotically manages to cancel the i.i.d. noise and
converges to the optimal policy, whereas there is no
guarantee for the convergence of OAPI and AVI to the
optimal solution in this case.

The fact that the L∞-norm bounds of DPP are ex-
pressed in terms of the sup-norm of average error
instead of sup-norm of error itself may be useful in
estimating DPP operator by Monte-Carlo sampling.
Each step of DPP consists of an expected value over
the action preferences of the next state and the next
action. In large-scale problems, exact evaluation of
this expectation is not feasible. The alternative is to
use Monte-Carlo simulation to estimate DPP operator.
However, by estimating DPP operator through Monte-
Carlo simulation we introduce a simulation noise term
(estimation error) to the problem. The hope is that
DPP, in the light of what we observe in example 1,
asymptotically cancels the estimation error caused by
Monte-Carlo simulation and provides a better esti-
mation of the optimal control than sampling-based
ADP methods which may propagate the estimation
error (Munos and Szepesvári, 2008).



Dynamic Policy Programming with Function Approximation

4.2 Approximate Dynamic Policy

Programming with Linear Function

Approximation

In this subsection, we provide a solution for approx-
imating DPP operator using linear function approxi-
mation and the least-squares regression. We also in-
troduce the ADPP algorithm based on this solution.

Before we proceed with the idea of approximating DPP
operator, we find it convenient to re-express some of
our results in section 3 in vector notation. p de-
notes a |S||A|×1 vector of the action preferences with
p(sa) = P (s, a) and P (s, a) relates to the policy by
(9). Furthermore, Op denotes a |S||A| × 1 vector,
such that, Op(sa) = OP (s, a) for all (s, a) ∈ S ×A.
Let us define Φ as a |S||A| × k matrix, where for each
(s, a) ∈ S ×A, the row vectorΦ(sa, ·) denotes the out-
put of set of basis functions Fφ = [φ1, · · · , φk] given
the state-action pair (s, a) as the input, where each
basis function φi : S ×A −→ ℜ.

A parametric approximation for the action preferences
p̂ can then be expressed as a projection of the action
preferences onto the column space spanned by Φ, p̂ =
Φθ, where θ ∈ ℜk is a k × 1 vector of parameters.

There is no guarantee that Op̂ stays in the column
span of Φ. Instead, a common approach is to find
a vector θ that projects Op̂ on the column space
spanned by Φ, while minimizing some pseudo-normed

error J = ‖Op̂−Φθ‖
2
Υ

=
(

Op̂−Φθ
)T

Υ
(

Op̂−Φθ
)

,
where Υ is a |S||A| × |S||A| diagonal matrix and
∑

sa diag
(

Υ
)

(sa) = 1 (Bertsekas, 2007, chap. 6).2 The
best solution, that minimize J , is given by the least-
squares projection:

θ
∗ = arg min

θ∈ℜk

J(θ) =
(

ΦTΥΦ
)−1

ΦTΥOp̂. (17)

Equation (17) requires the computation of Op̂ for all
states and actions. For large scale problems this be-
comes infeasible. However, we can simulate the state
trajectory and then make an empirical estimate of the
least-squares projection. The key observation in de-
riving a sample estimate of (17) is that the pseudo-
normed error J can be written as an expectation:

J = Esa∼Υ

[

(Op̂(sa)−Φθ(sa))T(Op̂(sa)−Φθ(sa))
]

.

Therefore, one can simulate the state trajectory ac-
cording to π (to be specified) and then empirically
estimate J and the least-squares solution for the cor-
responding visit distribution matrix Υ.

In an analogy with Bertsekas (2007, chap. 6.1), we can
derive a sample estimate of (17). We assume that a

2One can associate diag(Υ) with the stationary distri-
bution of state-action pairs (s, a) for some policy π and
the transition matrix T.

trajectory of m+ 1 (m ≫ 1) state-action pairs, Gπ =
{(s1, a1), (s2, a2) · · · , (sm+1, am+1)}, is available. The
trajectory Gπ is generated by simulating the policy π

for m + 1 steps and has a stationary distribution Υ.
Then, we construct the m×k matrix Φ̃ with Φ̃(i, j) =
φj(si, ai), where (si, ai) is the ith component of Gπ.
An unbiased estimation of (17) under the stationary
distribution Υ can then be identified as follows:

θ̃
∗
=

(

Φ̃TΦ̃
)−1

Φ̃Tˆ̃p, (18)

where ˆ̃p is a m× 1 vector with entries:

ˆ̃p(i) = p̂(siai) + r(siai, si+1)

+ γMηp̂(si+1)−Mηp̂(si), i = 1, 2, · · · ,m.
(19)

By comparing (19) with (13), we observe that
Op(siai) = Esi+1∼T

(

ˆ̃p(i)
)

.

So far, we have not specified the policy π that is used
to generate Gπ. There are several possibilities (Sutton
and Barto, 1998, chap. 5). Here, we choose the on-
policy approach, where the state-action trajectory Gπ
is generated by the policy induced by p̂. Algorithm 2
presents on-policy ADPP method which relies on (18)
to approximate DPP operator at each iteration.

Algorithm 2: (ADPP) On-policy approximate dy-
namic policy programming

Input: Randomized parameterized p̂(θ), η and m
for n = 1, 2, 3, . . . do

Construct the policy π̂ from p̂(θ) ;
Make a m+ 1 sequence G of (s, a) ∈ S ×A by
simulating π̂;
Construct ˆ̃p and Φ̃ from the state trajectory G;

θ̃
∗
=

(

Φ̃TΦ̃
)−1

Φ̃Tˆ̃p;

θ ← θ̃
∗
;

end

return θ

In order to estimate the optimal policy by ADPP we
only need some trajectories of state-action-reward gen-
erated by Monte-Carlo simulation (i.e., knowledge of
the transition probabilities is not required). In other
words, ADPP directly learns an approximation of the
optimal policy by Monte-Carlo simulation.

5 Numerical Results

In this section, we investigate the effectiveness of
ADPP on the well-known mountain-car problem and
compare its performance with standard approximate
dynamic programming and reinforcement learning
methods. The mountain-car domain has been reported
to diverge in the presence of approximation (Boyan
and Moore, 1995), although successful results have
been observed by carefully crafting the basis functions



Mohammad Gheshlaghi Azar, Vicenç Gómez, Hilbert J. Kappen

(Sutton, 1996). The specification of the mountain-
car domain is described by Sutton and Barto (1998,
chap. 8).

We compare the performance of algorithm 2 (ADPP)
with the approximate Q-iteration (AQI) (Bertsekas,
2007, chap. 6) and OAPI on the mountain-car prob-
lem.3 We also report results on the natural actor critic,
NAC-LSTD, (Peters and Schaal, 2008). The step size
βn is defined for the actor update rule of NAC-LSTD:

βn =
β0

tβn+ 1
, n = 1, 2, 3, . . . ,

with the free parameters β0 and tβ are some positive
constants. Also, the temperature factor τn for the soft-
max in OAPI with soft-max policy is given by:

τn =
τ0

tτ log(n+ 1) + 1
, n = 1, 2, 3, . . . ,

where the free parameters τ0 and tτ are some positive
constants. All the free parameters are optimized for
the best asymptotic performance. Also, for each trial,
we initialize all the algorithms in a random fashion.

As a measure of performance evaluation, we use the
root mean-squared error (RMSE) between the value
functions vπ̂n under the policy induced by the cor-
responding algorithm at iteration n and the optimal
value functions v∗: RMSE =

∥

∥vπ̂n − v∗
∥

∥

2

/
√

|S|.

To obtain an accurate estimate of the optimal value
function, we discretize the state space with a 1751×151
grid and solve the resulting infinite-horizon MDP using
value iteration (Bertsekas, 2007, chap. 1). The result-
ing value function is just used to derive the RMSE for
the approximate algorithms and computing the opti-
mal policy for discretized MDP.

In addition to standard approximate-DP algorithms,
we compare our results with the performance of the
best linear function approximator (optimal FA). The
best linear function approximator is specified as the
projection of the optimal policy π∗ of discretized MDP
onto the column space spanned by Φ defined in sec-
tion 4. Here, we consider k = 27 random radial ba-
sis functions to approximate the state-action depen-
dent quantities, i.e., the action-value functions, the
action preferences (NAC-LSTD and ADPP) and the
approximate optimal policy π̂

∗ (the optimal FA), and
k = 9 radial basis functions to approximate the state-
dependent value functions in NAC-LSTD. we also fix

3In addition to ǫ-greedy policy (ǫ = 0.01), we also im-
plement OAPI with a soft-max policy, since the existence
of fixed point is guaranteed in this case (Farias and Roy,
2000). Further, to facilitate the computation of the con-
trol policy, we approximate the action-value functions as
opposed to the value functions in OAPI.

the number of samples m to 5 × 105 which we refresh
then at each iteration.4 Figure 1. a shows the RMSE
of all algorithms as a function of the number of iter-
ations. First, we can see that ADPP asymptotically
outperforms the other methods and substantially nar-
rows the gap with the optimal FA performance. ADPP
is therefore asymptotically the best approximate algo-
rithm which can be applied to large instances.

We also report a small decline in performance of both
ADPP and OAPI (soft-max) after the corresponding
RMSEs are minimized at iteration 150 and iteration
350. This is a minor detail and can be explained by
the fact that both ADPP and OAPI are on-policy algo-
rithms. Such approaches tend to increase the number
of samples for the high-value states and reduce the
number of samples for the low-value ones. This spe-
cialization leads to an eventual small increase of the
RMSE measure, which does not differentiate between
states that are more frequent than others.5

To compare the transient behavior of the algorithms,
we plot the RMSE in terms of the computational cost
(CPU time) for the first 100 seconds of simulation (Fig-
ure 1. b). We observe that, while some DP methods,
in particular NAC-LSTD(0), improves fast in the early
stages of optimization, ADPP performs better in the
long term (one minute in this case). Overall, we con-
clude that DPP, when combined with the function ap-
proximation, reaches a near-optimal performance and
outperforms the methods considered here. ADPP can
be slow in the early stages of the optimization process,
but improves by a wide margin in the long term.

6 Related Work

There are some other approaches based on iterat-
ing the parametrized policy. The most popular is a
gradient-based search for the optimal policy, which di-
rectly estimates the gradient of the performance with
respect to the parameters of the control policy by
Monte-Carlo simulation (Kakade, 2001; Baxter and
Bartlett, 2001). Although the gradient-based policy-
search methods guarantee convergence to a local maxi-
mum, they suffer from high variance and local maxima.

Wang et al. (2007) introduce a dual representation
technique called dual dynamic programming (dual-

4These basis functions are randomly placed within the
range of their inputs. The variance matrix is identical for
all the basis functions:

Σ =





σ2

x 0 0
0 σ2

ẋ 0
0 0 σ2

u



 =





0.1606 0 0
0 0.0011 0
0 0 0.2222



 ,

5The RMSE of ADPP at iteration n = 5000 was 8.2.



Dynamic Policy Programming with Function Approximation

ADPP vs. approximate DP on mountain-car problem

20 40 60 80 100

(b)

CPU time (sec)

 

 

ADPP
AQI

OAPI (ǫ greedy)

OAPI (soft-max)

NAC-LSTD(0)

NAC-LSTD(1)

Optimal FA

100 200 300 400 500

4

6

8
10

20

30

40
50

(a)

n

R
M

SE

Figure 1: RMSE in terms of (a) number of iterations and (b) CPU time. The results are averages over 50 runs.

DP) based on manipulating the state-action visit dis-
tributions . They have reported better convergence
results than value-based methods in the presence of
function approximation. The drawback of the dual
approach is that, it needs more memory space than
the primal representation.

The work proposed in this paper has some relation to
recent work by Kappen (2005); Todorov (2006), who
formulate the control cost as a relative entropy be-
tween the controlled and uncontrolled dynamics. The
difference with DPP is that in their work a restricted
class of control problems is considered. Instead, the
present approach is more general.

Another relevant study is relative entropy policy
search (REPS) (Peters et al., 2010) which relies on
the idea of minimizing the relative entropy to control
the size of policy update. The main differences are:
1) the REPS algorithm is an actor-critic type of algo-
rithm (without using a gradient in the actor), while
DPP is more a policy iteration type of method, 2) In
REPS η is also optimized while here is fixed, and 3)
here we provide a convergence analysis of DPP, while
there is no convergence analysis in REPS.

7 Discussion and Future Works

We have presented a novel policy-search method, dy-
namic policy programming (DPP), to compute the op-
timal policy through DPP operator. We have proven
the convergence of our method to the optimal policy
theoretically for the tabular case. We also have pro-
vided a L∞-norm performance-loss bounds for DPP
and generalize these bounds such that it handles ap-
proximation. The L∞-norm loss-bounds suggest that
DPP can perform better than ADP methods in the
presence of approximation error. Experimental results
for the mountain car problem confirms our theoret-

ical results and show that DPP asymptotically out-
performs the standard ADP and RL methods. On
the other hand, ADPP makes little progress towards
the optimal performance at the early stages of opti-
mization. This behavior is also predicted by our per-
formance loss bounds, since DPP loss-bound decays
with linear rate as opposed to greedy ADP methods
in which the loss-bounds decay with an exponential
rate. NAC-LSTD(0) is also faster than DPP, since it
moves the policy in the direction of the gradient and
converges to a locally optimal solution very fast but
its asymptotic performance is inferior to DPP.

In this study, we provide L∞-norm performance-loss
bounds for approximate DPP. However, most super-
vised learning and regression algorithms rely on min-
imizing some form of Lp-norm error. Therefore, it is
natural to search for a kind of performance bounds
that relies on the Lp-norm of approximation error.
Following Munos (2005), Lp-norm bounds for approx-
imate DPP can be established by providing a bound on
the performance loss of each component of value func-
tion under the policy induced by DPP. This is a part
of ongoing research which will be published elsewhere.

Another direction for future work is to provide finite-
sample performance-loss bounds for the sampling-
based approximate DPP in the spirit of previous the-
oretical results available for fitted value iteration and
fitted Q-iteration by Antos et al. (2007); Munos and
Szepesvári (2008).

Finally, an important extension of our results would
be to apply DPP for large-scale action problems. In
that case, we need an efficient way to approximate
MηP (s) in update rule (13) since computing the ex-
act summations become expensive. One idea is to
sample estimate MηP (s) using Monte-Carlo simula-
tion (MacKay, 2003, chap. 29), since MηP (s) is the
expected value of P (s, a) under the soft-max policy π.



Mohammad Gheshlaghi Azar, Vicenç Gómez, Hilbert J. Kappen

References

Antos, A., Munos, R., and Szepesvári, C. (2007). Fit-
ted q-iteration in continuous action-space mdps. In
Proceedings of the 21st Annual Conference on Neu-
ral Information Processing Systems.

Bartlett, P. L. (2003). An introduction to reinforce-
ment learning theory: Value function methods. Lec-
ture Notes in Artificial Intelligence, 2600/2003:184–
202.

Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon
policy-gradient estimation. Journal of Artificial In-
telligence Research, 15:319–350.

Bertsekas, D. P. (2007). Dynamic Programming and
Optimal Control, volume II. Athena Scientific, Bel-
mount, Massachusetts, third edition.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-
Dynamic Programming. Athena Scientific, Belmont,
Massachusetts.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and
Lee, M. (2009). Natural actor-critic algorithms. Au-
tomatica, 45(11):2471–2482.

Boyan, J. A. and Moore, A. W. (1995). Generalization
in reinforcement learning: Safely approximating the
value function. In Advances in Neural Information
Processing Systems, pages 369–376.

Farias, D. P. and Roy, B. V. (2000). On the existence
of fixed points for approximate value iteration and
temporal-difference learning. Journal of Optimiza-
tion Theory and Applications, 105(3):589–608.

Kakade, S. (2001). Natural policy gradient. In Ad-
vances in Neural Information Processing Systems
14, pages 1531–1538, Vancouver, British Columbia,
Canada.

Kappen, H. J. (2005). Path integrals and symmetry
breaking for optimal control theory. Statistical Me-
chanics, 2005(11):P11011.

MacKay, D. J. C. (2003). Information Theory, Infer-
ence, and Learning Algorithms. Cambridge Univer-
sity Press, Cambridge, United Kingdom, first edi-
tion.

Munos, R. (2005). Error bounds for approximate value
iteration. In Proceedings of the 20th National Con-
ference on Artificial Intelligence, volume II, pages
1006–1011, Pittsburgh, Pennsylvania.

Munos, R. and Szepesvári, C. (2008). Finite-time
bounds for fitted value iteration. Journal of Ma-
chine Learning Research, 9:815–857.

Peters, J., Mülling, K., and Altun, Y. (2010). Relative
entropy policy search. In AAAI.

Peters, J. and Schaal, S. (2008). Natural actor-critic.
Neurocomputing, 71(7–9):1180–1190.

Sutton, R. S. (1996). Generalization in reinforcement
learning: succesful examples using sparse coarse
coding. In Advances in Neural Information Process-
ing Systems 9, pages 1038–1044.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
Massachusetts.

Sutton, R. S., McAllester, D., Singh, S., and Man-
sour, Y. (1999). Policy gradient methods for rein-
forcement learning with function approximation. In
Advances in Neural Information Processing Systems
12, pages 1057–1063, Denver, Colorado, USA.

Szepesvari, C. (2009). Reinforcement learning algo-
rithms for mdps – a survey. Technical Report TR09–
13, Department of Computing Science, University of
Alberta, Edmonton, Alberta, Canada.

Thiery, C. and Scherrer, B. (2010). Least-squares
policy iteration: Bias- variance trade-off in control
problems. In Proceedings of the 27th Annual Inter-
national Conference on Machine Learning.

Todorov, E. (2006). Linearly-solvable markov de-
cision problems. In Proceedings of the 20th An-
nual Conference on Neural Information Process-
ing Systems, pages 1369–1376, Vancouver, British
Columbia, Canada.

Wang, T., Lizotte, D., Bowling, M., and Schuur-
mans, D. (2007). Stable dual dynamic program-
ming. In Proceedings of the 21st Annual Conference
on Neural Information Processing Systems, Vancou-
ver, British Columbia, Canada.


