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Theories of learning and generalization hold that the generalization bias,
defined as the difference between the training error and the generaliza-
tion error, increases on average with the number of adaptive parameters.
This article, however, shows that this general tendency is violated for
a gaussian mixture model. For temperatures just below the first sym-
metry breaking point, the effective number of adaptive parameters in-
creases and the generalization bias decreases. We compute the depen-
dence of the neural information criterion on temperature around the sym-
metry breaking. Our results are confirmed by numerical cross-validation
experiments.

1 Introduction

An important problem for learning is to optimize the model such that the
best generalization performance is obtained. Generalization performance
depends on the number of adaptive parameters in the model. We can reduce
the training error as much as needed by increasing the number of adaptive
parameters. However, the performance of the model should be evaluated
by the generalization error, which measures the error for test samples. The
best generalization performance is usually not obtained by maximizing the
number of adaptive parameters (Vapnik, 1984; Rissanen, 1986).

The generalization bias is defined as the difference between the general-
ization error and the training error. The expected generalization bias can be
measured approximately by the neural information criterion (NIC) or nu-
merically through cross-validation on test data (Moody, 1992; Amari, 1993;
Murata, Yoshizawa, & Amari, 1991, 1994). Typically, if the number of model
parameters increases, the training error decreases because a better fit can be
obtained. At the same time, the generalization bias is expected to increase
due to the larger model variability. In this article we present an example
where this intuition is violated: the case that generalization bias decreases
when at the same time the number of model parameters increases.
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We consider radial basis Boltzmann machines (RBBM), a special class
of gaussian mixture models (Kappen, 1995). Gaussian mixture models have
attracted a lot of attention in the neural network community (Barkai, Seung,
& Sompolinsky, 1993; Titterington, 1985) because they are closely related to
several neural network models such as radial basis function (RBF) networks
(Poggio & Girosi, 1990) and hierarchical mixture of experts (HME) networks
(Jacobs & Jordan, 1991; Jordan & Jacobs, 1994).

For gaussian mixtures, complexity and generalization performance are
controlled by the number of mixture components. In RBBMs, the complex-
ity of the model is controlled by a continuous parameter β. When β is small,
the maximum likelihood (ML) solution of the RBBM degenerates into one
gaussian. At a critical value of β, the ML solution becomes a mixture of
several gaussians. This phenomenon of symmetry breaking is repeated re-
cursively for increasing β. Thus, β controls the effective number of mixture
components and, in this way, the generalizaton performance. In this arti-
cle we study the generalization bias for RBBMs around the first symmetry
breaking point.

In section 2, we define RBBMs and show the symmetry breaking mech-
anism. In section 3, we derive the condition when the symmetry breaking
is two-way or h-way, where h is the number of mixture components in the
RBBM. In section 4, we show an analytical result that the generalization bias
of the model, as measured by the NIC, decreases if the symmetry breaking
is two-way, even though the superficial effective number of parameters in-
creases. If we can assume that training error does not change significantly
around the symmetry breaking point, this anomaly implies that the ML
solution just below the critical temperature is expected to realize a smaller
generalization error than just above the critical temperature. In section 5,
we show that this effect is confirmed numerically.

2 Radial Basis Boltzmann Machines

Let us consider a gaussian mixture model with equal priors in which the
variance of all components is spherically symmetric and identical:

p(x |W;β) = 1
h

h∑
i=1

√
β

π
exp(−β ‖x−wi‖2). (2.1)

W denotes the set of adaptive parameters {w1, . . . ,wh}. The complexity of
the model is determined by h, the number of gaussian components, and β, a
control parameter called the inverse temperature in physics. Statistically β
is equal to half the inverse variance. We chose spherical covariance matrices,
since we are interested in the relation between complexity and symmetry
breaking. We expect that our results can be generalized to mixture models
with full covariance matrices.
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This unsupervised model was originally proposed by Rose, Gurewitz,
and Fox (1990) and generalized by Kappen (1993, 1995; Nijman & Kappen,
1997) to the supervised case. The model is related to fuzzy clustering as well
(Bezdek, 1980). In this article, we refer to model 2.1 as a RBBM.

Equation 2.1 can be written as

p(x) =
h∑

i=1

p(x, i) =
h∑

i=1

p(x|i)p(i),

with i labeling the individual clusters and p(i) = 1/h the prior probability
of each cluster. p(x|i) is simply a gaussian distribution in x centered onwi.
For fixed β, the ML solution for the cluster means is easily derived and is
given by Rose et al. (1990),

wi = 〈xp(i|x)〉
〈p(i|x)〉 ,

where 〈 · 〉 denotes expectation values with respect to q(x),

〈 · 〉 ≡
∫
· q(x)dx,

and q(x) is the target distribution from which the training samples and test
samples are generated. These coupled equations can be solved by a variety
of methods such as the expectation maximization (EM) algorithm.

An example of the ML solutions as a function of the temperature is shown
in Figure 1. The training data are generated with equal probability from
two distributions: u[0.5, 1.5] and N[−1, 0.32], where u[a, b] is the uniform
distribution on [a, b] and N[µ, v] is the gaussian distribution with mean µ
and variance v. The number of training samples is 100, and h = 100.

For small β, the ML solution is of the formw1 = w2 = · · · = wh, that is,
the solution corresponds to one cluster. At a critical value of β, the cluster
splits into smaller parts. These symmetry breakings reoccur recursively at
higher values of β. Therefore, the number of gaussian components can be
controlled by adjusting the temperature in this model. So at any β, although
the total number of kernels is h, only a smaller effective number of kernels
is used. For this reason, we assume h to be sufficiently large. The complexity
is then controlled by β only.

3 Symmetry Breaking Point of the RBBM

Since the effective number of parameters changes at the symmetry breaking
points (SBPs), we study the symmetry breaking process in detail. Although
the behavior of symmetry breaking is complicated to analyze, we have
some results on the first SBP, the highest temperature at which the phase
transition occurs. These results are expected to be applicable for the other
SBPs qualitatively.
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Figure 1: An example of the ML solution and the symmetry breaking phe-
nomenon. Horizontal axis: log(β); vertical axis: w or x. Dots show the ML solu-
tion for each temperature; dashes on the right show the training samples.

When the temperature is higher than 1/βc, all the gaussian components
are degenerated into one gaussian, and the ML solution is given bywi = 〈x〉.
One can compute the first SBP analytically as

β = βc ≡ 1
2λ1

, (3.1)

whereλ1 is the maximal eigenvalue of the covariance matrix ofx. This means
that the first symmetry breaking occurs when β is equal to the variance of
samples along the first principal component axis (Rose et al., 1990).

This result is considered to be applicable to other SBPs as follows. After
breaking, the two clusters drift apart as a function of β. If the distance
between the clusters is sufficiently large, each data point contributes to the
covariance matrix of the closest cluster only. The eigenvalues of this reduced
matrix determine the next critical temperature, as in Equation 3.1.

3.1 Below the First SBP. We can characterize the behavior of the sym-
metry breaking under the following assumption:
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Assumption. The target distribution q(x) is defined onR (one dimension) and
is assumed to be symmetric. The number of gaussian components h in the RBBM
is taken to be even.

Let σ 2 ≡ 〈(x−〈x〉)2〉 and s4 ≡ 〈(x−〈x〉)4〉denote, respectively, the second-
and fourth-order moment of the distribution q(x). The fourth-order cumu-
lant is defined as κ4 ≡ s4 − 3(σ 2)2 (κ4/s4 is called the kurtosis in statistics).

Proposition 1. Under the assumption, the behavior of the first symmetry break-
ing can be classified into the following two cases:

1. If κ4 6= 0 the symmetry breaking is two-way: the components split into two
clusters. The relation between the ML solution wi and β in the neighborhood
of the first SBP βc is given by

1β ' s4

6(σ 2)4
(1wi)

2, (3.2)

where 1β = β − βc > 0, 1wi = wi − 〈x〉.
2. If κ4 = 0 the symmetry breaking is h-way: the individual components 1wi

are underdetermined up to the third-order approximation that we computed.
This suggests that no preferred breaking pattern exists, although fourth-order
corrections may somewhat limit this freedom. The relation between the ML
solution wi and β in the neighborhood of the first SBP βc is written as

1β ' 1
2(σ 2)2

σ 2
w, (3.3)

where σ 2
w = 1

h

∑
i1wi

2, 1wi = wi − 〈x〉.

κ4 is equal to zero when q(x) is gaussian; hence the condition represents
the similarity between q(x) and gaussian in the sense of the fourth-order
cumulant. An outline of the proof of proposition 1 is given in appendix A.

This result can be intuitively understood as follows. When β increases
toward the critical point, the stability of the symmetric solution wi = 〈x〉 de-
creases. The stability is measured by the eigenvalues of the Hessian, which
is the matrix of second derivatives of the likelihood. At β = βc some eigen-
values of the Hessian become zero. Thus, the symmetric solution becomes
unstable. When κ4 6= 0, only one eigenvalue becomes zero. The correspond-
ing eigenvector is in the direction of symmetry breaking, and the breaking
is twofold: one cluster moves in the positive eigendirection and one in the
negative eigendirection. When κ4 = 0, however, all eigenvalues become
zero simultaneously, and thus all directions become unstable. The breaking
is h-fold, because the initial movement of each cluster center can be in any
arbitrary direction.
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Equation 3.3 is interpreted as follows: Suppose that we have an infinite
number of kernels. The model p(x | w) = (1/h)

∑h
i=1 φ(x − wi, β), with

φ(x, β) a gaussian density function with mean 0 and variance 1/2β, can be
written as

p(x | w) =
∫

p(w)φ(x− w, β)dw,

with p(w) some distribution over the kernel means. As an example of κ4 = 0,
let us consider the case that the target distribution q(x) is gaussian. Therefore,
at large β, p(x | w) will approach a gaussian distribution. Since p(x | w) is
the convolution of p(w)with a gaussian distribution, it follows that p(w) for
large β will also approach a gaussian distribution.

4 Nonmonotonic Generalization Bias

Since for the RBBM the effective number of adaptive parameters changes
as a function of temperature, we must find the temperature that gives the
best generalization. Overfitting results in a suboptimal effective number of
components and a suboptimal clustering.

Although the generalization bias is a statistical quantity and unknown
in general, we can estimate it through cross-validation. Alternatively, we
can approximate the mean generalization bias, which is known as the NIC
(Murata et al., 1991, 1994) or the effective number of parameters (Moody,
1992). Using this value, we can select the model that minimizes the sum
of the training likelihood and the mean generalization bias. Another well-
known generalization bias is Akaike’s information criterion (AIC), which is
given by the number of independent parameters. However, AIC assumes
that the target distribution is an RBBM, which is a poor assumption around
the SBPs.

4.1 Neural Information Criterion. Given a set of P training samples
X(P) = {x1, . . . ,xP} from a target probability distribution q(x), the ML
solution W = W(P) maximizes the empirical likelihood over the training
samples,

R(P)emp(W;β) ≡
1
P

P∑
i=1

log p(xi |W;β). (4.1)

The true likelihood is defined as the expectation value of the likelihood over
the target distribution q(x):

Rexp(W;β) ≡ 〈log p(x |W;β)〉. (4.2)

The generalization bias can be approximated by making a Taylor expansion
of R(P)emp(W;β) around W(P) and the fact that the asymptotic distribution of
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W(P) is locally a gaussian distribution (Murata et al., 1991, 1994). Conse-
quently, when P is large enough, the mean generalization bias is asymptot-
ically given by

〈
R(P)emp(W

(P);β)
〉
−
〈
Rexp(W(P);β)

〉
' hNIC

P
, (4.3)

where the average is taken over all training sets of size P, X(P). hNIC is the
NIC, defined by

hNIC(β) ≡ Tr[H(W∗)−1D(W∗)], (4.4)

where W∗ denotes the ML solution of the true likelihood. H(W) and D(W)

are the following matrices,

Hij(W) ≡ −〈∂i∂j log p(x;W, β)〉, (4.5)

Dij(W) ≡ 〈∂i log p(x |W, β) ∂j log p(x |W, β)〉, (4.6)

where ∂i ≡ ∂
∂wi

. If q(x) belongs to the model set, NIC is equal to AIC because
H(W∗) = D(W∗).

In practice, when we apply the NIC in selecting a model, we need to
evaluate the bias by using only one training set. In this case, the bias is
given by

R(P)emp(W
(P);β)− Rexp(W(P);β) ' hNIC

P
+ U√

P
, (4.7)

where U = √P{R(P)emp(W∗;β)−Rexp(W∗;β)} is a random variable of order 1
with zero mean. It can be shown that U is the same for all the models within
a nested set of models (Murata et al., 1994), which holds for the RBBM.
Therefore, although the U/

√
P term dominates the NIC term, it does not

affect the model selection.
In the following sections, we compute the behavior of the NIC near the

SBP for the RBBM. The effective number of adjustable parameters in the
RBBM is constant between symmetry breakings and increases stepwise for
increasing β. Since the NIC measures the complexity of the model, it is
expected to increase as β increases. Our analysis indeed shows a linear
increase of NIC withβ just before the symmetry breaking (β < βc). However,
just after the symmetry breaking (β > βc), our analysis shows a decrease of
the NIC depending on κ4.

4.2 Above the First SBP. When there is only one cluster (β < βc), we
can compute hNIC explicitly. The following proposition shows that the gen-
eralization bias increases linearly in proportion to β:
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Proposition 2. If β < βc, NIC is given by

hNIC(β) = 2βTr[Vx], (4.8)

where Vx is the covariance matrix of q(x).

An outline of the proof of proposition 2 is given in appendix B. Intuitively,
the NIC measures the sensitivity of the likelihood against sample fluctua-
tion. Proposition 2 explains this intuition because for small β, one has broad
kernels whose centers are less sensitive to sample fluctuations.

4.3 Below the First SBP. Because the situation below the critical temper-
ature is very complicated, we analyze the NIC under the same assumption
as in section 3.1:

Proposition 3. Under the assumption and also if κ4 6= 0 and s4 6= (σ 2)2,

lim
β↓βc

∂

∂β
hNIC(β) = −∞. (4.9)

The condition s4 6= (σ 2)2 applies to all distributions except for a mixture distribu-
tion of 2 δ-functions. If q(x) = (δ(x−1)+δ(x+1))/2 one obtains ∂hNIC(βc)/∂β =
−4.

An outline of the proof of proposition 3 is given in appendix C. Propo-
sition 3 states that the NIC of the RBBM decreases even if the effective
number of parameters increases when the symmetry breaking in the first
SBP is two-way.

Since the training error is approximately constant around the SBP, we
conclude that this model gives slightly better generalization error (in terms
of NIC) just below the critical temperature than at or just above the critical
temperature. Whether this anomalous behavior affects the optimal value of
β depends on the functional dependence of the training error onβ. Although
this effect causes a local minimum in the generalization error as a function
of β around the SBP, its global minimum might be attained at much higher
or lower values of β.

It is not easy to analyze the case κ4 = 0, since the symmetry breaking is
h-way and the ML solution is underdetermined by the third-order approx-
imation as shown in proposition 1.

5 Experiments

In this section, we show some computer simulation results for the two cases
with different fourth-order cumulants presented in proposition 1. In both
cases, the target distribution q(x) is created so that the mean is 0.0 and the
variance is 1.0. Therefore, logβc ' −0.693, and the ML solution for training
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Figure 2: ML solution versus log(β). Data are generated from a distribution
with κ4 6= 0. Horizontal axis: log(β); vertical axis: w or x. Dots show the ML
solution for each temperature; dashes on the right show the training samples.

samples breaks around this value. Both the number of training samples
(P) and the number of gaussian components (h) is set to 100. We use the
EM algorithm (Dempster, Laird, & Rubin, 1977) to optimize the empirical
likelihood. We initialize the EM algorithm with one gaussian component on
each of the training samples. The test set consists of 100,000 samples, which
are generated from the same distribution as training samples.

5.1 The Case of κ4 6= 0. The target distribution is a mixture of two
gaussians,

q(x) = 1
2

√
C1

π

[
exp

{
−C1(x− C2)

2
}
+ exp

{
−C1(x+ C2)

2
}]
,

where C1 = 12.5,C2 =
√

0.96. C1 and C2 are chosen such that the variance of
q(x) is 1.0. An example of the ML solution as a function of the temperature
around the first SBP is shown in Figure 2. The approximate generalization
bias, as given by the NIC, as a function of temperature is shown in Figure 3.
Note that the vertical tangent at the breaking point is in agreement with
proposition 3.
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Figure 3: NIC as a function of log(β) (magnified around the symmetry breaking
point). Data are generated from a distribution with κ4 6= 0. Horizontal axis:
log(β); vertical axis: NIC multiplied by the number of training samples; dashed
line: βc

The generalization bias averaged over 50 experiments with different
training sets is shown in Figure 4. It differs from Figure 3 in two ways.
It does not show the vertical tangent as in the individual runs because the
vertical tangent appears only very close to the symmetry breaking point
and the symmetry breaking point fluctuates for different training sets. Sec-
ond, the term U in equation 4.7 is rather different for different training sets,
giving a smoothing effect on the average generalization bias.

5.2 The Case of κ4 = 0. The target distribution is one gaussian with a
unit variance,

q(x) = 1√
2π

exp(−x2/2).

In this case, the convergence of the EM algorithm is much more unstable
than in the case of the previous section, because of the reasons mentioned in
proposition 1. A typical ML solution as a function of temperature is shown
in Figure 5.
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Figure 4: Generalization bias from cross-validation, averaged over 50 exper-
iments, as a function of log(β). Data are generated from a distribution with
κ4 6= 0. Horizontal axis: log(β); vertical axis: generalization bias multiplied by
the number of training samples; dashed line: average of empirical value of βc’s.

The generalization bias averaged over 50 experiments with different ran-
dom numbers are shown in Figure 6. We did not observe a single instance
where the likelihood is maximal around the first SBP as in the case of κ4 6= 0.

6 Conclusion

We have shown the nonmonotonical behavior of the generalization bias of a
special class of gaussian mixture models, called the radial basis Boltzmann
machines. For high temperature (large variance in the gaussian kernels),
the generalization error increases linearly with β. On the other hand, be-
low the critical temperature, the symmetry breaking phenomenon depends
critically on the value of the fourth cumulant κ4.

If κ4 6= 0, the generalization bias decreases with β below the critical tem-
perature. This means that the NIC decreases during the symmetry breaking
process. After symmetry breaking is complete, NIC increases again. While
NIC decreases, the effective number of adaptive parameters increases be-
cause the kernels split up. It is normally assumed that NIC measures the
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Figure 5: ML solution versus log(β). Data are generated from a gaussian distri-
bution (κ4 = 0). Horizontal axis: log(β); vertical axis: w or x. Dots show the ML
solution for each temperature; dashes on the right show the training samples.

effective number of adaptive parameters. We conclude that this relation
is violated around the SBPs. This anomalous behavior affects the optimal
model selection, which in this article is the choice of the optimal β. When
the optimal generalization error occurs around an SBP, increasing β will
decrease (or at least not increase) training error as well as decrease NIC.

If κ4 ' 0 we predict theoretically that symmetry breaking is h-way, but
this is not observed numerically. We attribute this discrepancy to the deli-
cacy of the symmetry breaking process and the numerical instability of the
optimization procedure.

Although our analysis was restricted to one dimension, we expect our
results to hold in higher dimensions as well. If the number of kernels is
large, the condition of an even number of kernels is not very strict. If the tar-
get distribution is nonsymmetric and contains odd moments, other results
could be observed.

Appendix A: Outline of the Proof of Proposition 1

We assume 〈x〉 = 0 without loss of generality. Since we assume an even
number of gaussian components, let h = 2h′.
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Figure 6: Generalization bias from cross-validation, averaged over 50 experi-
ments, as a function of log(β). Data are generated from a gaussian distribution
(κ4 = 0). Horizontal axis: log(β); vertical axis: generalization bias multiplied by
the number of training samples; dashed line: average of experimental values
of βc’s.

Since the target distribution is symmetric and the number of gaussians
is even, the symmetry breaking will be symmetric and we can write

p(x |W;β) = 1
2h′

h′∑
i=1

√
β

π
pi(x | wi, β), (A.1)

where

pi(x | wi, β) ≡ exp(−β(x− wi)
2)+ exp(−β(x+ wi)

2). (A.2)

The derivative of the log-likelihood is defined by

Li(x |W, β) ≡ ∂

∂wi
log p(x |W, β) = ∂ipi(x | wi, β)

p(x |W, β) . (A.3)

The expectation value of Li under the target distribution q is equal to zero
at the ML solution,

Rexp(W∗, β) = 〈Li(x |W∗, β)〉 = 0. (A.4)
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Above the critical temperature, W = 0. Below the critical temperature, W
will become nonzero. Let1wi denote the weight vector describing the mean
of kernel i. In order to obtain a nontrivial solution of 1wi as a function of
1β = β − βc, we expand Li(x | W, β) to third order in W and to first order
in β around β = βc and W = 0:

〈Li(x |W, β)〉 = 2
h′
1β1wi − 1

2

∑
j6=i

(
s4

h′2(σ 2)2
− 1

)
1wi1w2

j

+ 1
6h′(σ 2)2

{
s4

(σ 2)2
− 3− 3

h′

(
s4

(σ 2)2
− 1

)}
1w3

i

+ higher order terms. (A.5)

Setting 〈Li(x | W, β)〉 = 0 and neglecting higher-order terms, we obtain h′
simultaneous equations of 1β and 1wi.

Since a solution 1wi = 0 gives a local minimum of the likelihood, we
can assume 1wi 6= 0. If s4 6= 3(σ 2)2, we obtain 1w2

i = 1w2
j and 1β =

{s4/6(σ 2)4}1w2
i , which is the first case of proposition 1.

On the other hand, if s4 = 3(σ 2)2, the simultaneous equations degenerate
to the equation1β =∑i1w2

i /{2h′(σ 2)2}. It means wi cannot be determined
uniquely from β when we neglect higher-order terms.

Appendix B: Outline of the Proof of Proposition 2

If the temperature is higher than the first SBP, all gaussians degenerate to
one gaussian; therefore the only thing we should do is to calculate NIC for
one gaussian model.1

We derive D(W∗) and H(W∗) for one gaussian model as follows,

Dij(W∗) = 4β2Vij, (B.1)

Hij(W∗) = 2βδij, (B.2)

where Vij is a covariance between xi and xj and δij is Kronecker’s δ. Therefore
NIC is given by

hNIC(β) = Tr[H(W∗)−1D(W∗)] = 2βTr[Vx]. (B.3)

Appendix C: Outline of the Proof of Proposition 3

Similar to appendix A, we assume 〈x〉 = 0 without loss of generality. The
symmetry breaking is two-way from the assumption of proposition 3. As a

1 This is not strictly true, because the matrices H and D are still h-dimensional. How-
ever, one can show that this h dependence drops out in equation 4.4.
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result, one can show that the expansion of hNIC around the SBP is identical
to the case of only two gaussian kernels. Therefore, we analyze the NIC of
the model of two gaussians.

The model of two gaussians is written as

p(x | w1,w2;β) = 1
2

√
β

π

[
exp{−β(x− w1)

2} + exp{−β(x+ w2)
2}
]
. (C.1)

D(w1,w2) and H(w1,w2) can be calculated from their definition. At the ML
solution, we have w1 = w2 = w. Therefore we obtain

D(w,w) =
[

d0 d2
d2 d0

]
, (C.2)

H(w,w) =
[

d1 d2
d2 d1

]
, (C.3)

where

d0 =
〈
4β2(x− w)2

(p1)
2

p2

〉
, (C.4)

d1 = d0 +
〈
2β

p1

p
− 4β2(x− w)2

p1

p

〉
, (C.5)

d2 =
〈
−4β2(x− w)(x+ w)

p1p2

p2

〉
, (C.6)

where p1 = exp(−β(x− w)2), p2 = exp(−β(x+ w)2) and p = p1 + p2. Let

ĥNIC(β,w) = Tr[H(w,w)−1D(w,w)], (C.7)

which is equal to hNIC(β) for w = w∗. Expanding ĥNIC(β,w) around the first
SBP (β = βc,w∗ = 0) with respect to β and w,

ĥNIC(β,w) = Tr[H−1D] = 2
d0d1 − d2

2

d2
1 − d2

2

, (C.8)

we obtain

ĥNIC(β,w) = ĥNIC(βc, 0)+
{
∂

∂β
ĥNIC(βc, 0)

}
1β

+ 1
2

{
∂2

∂w2 ĥNIC(βc, 0)
}
1w2

+ higher-order terms, (C.9)
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where both the second and the third terms on the right-hand side of equa-
tion C.9 are of order1β, since1w2 ' {6(σ 2)4/s4}1β at the ML solution from
equation 3.2.

Substituting d0, d1, d2 by their values, the coefficient of the second term
is given by

∂

∂β
ĥNIC(βc, 0) = 2σ 2, (C.10)

and the coefficient of the third term before substituting β = βc is given by

1
2
∂2

∂w2 ĥNIC(β, 0) = 4β
(

1− 2βσ 2 − 1− 4β2s4

1− 2βσ 2

)
. (C.11)

When s4 6= (σ 2)2, and using the fact that βc = 1/(2σ 2) and s4 ≥ (σ 2)2, we
infer that equation C.11 diverges to −∞ as β converges to βc from right.

The only case that s4 = (σ 2)2 is when q(x) is equal to δ(x) or (δ(x − a) +
δ(x + a))/2. Since there is no SBP in the former case, we need to consider
only the latter case. Without loss of generality, we assume a = 1 and the
derivative taken from the right is derived from a simple calculation,

∂

∂β
ĥNIC(βc, 0) = −4. (C.12)
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