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Abstract. Switching linear dynamic systems can monitor systems that
operate in different regimes. In this article we introduce a class of multi-
scale switching linear dynamical systems that are particularly suited if
such regimes form a hierarchy. The setup consists of a specific switching
linear dynamical system for every level of coarseness. Jeffrey’s rule of
conditioning is used to coordinate the models at the different levels.
When the models are appropriately constrained, inference at finer levels
can be performed independently for every subtree. This makes it possible
to determine the required degree of detail on-line. The refinements of very
improbable regimes need not be explored.

The computational complexity of exact inference in both the standard
and the multi-class switching linear dynamical system is exponential in
the number of observations. We describe an appropriate approximate
inference algorithm based on expectation propagation and relate it to a
variant of the Bethe free energy.

1 Introduction

In a linear dynamical system (LDS) a hidden state variable x; is assumed to
evolve with Markovian, linear Gaussian dynamics, of which only noisy measure-
ments z; are available. In a switching linear dynamical system (SLDS) this model
is extended with discrete switch states s; that denote the regime the system is
in. Within every regime the state x; evolves with different dynamics and also the
observation model p(z|x:, s;) might be different. The regime itself also follows
a first-order Markov process. The model equations read

p(X¢|x¢—1,5: = §,0) = N(x¢; Ajxe-1,Q5)  p(ze|Xe, 50 = J, 0) = N(z¢; Cjxy, R;)

p(st = jlseg—1 =14,0) =I5 ,

with A (.;.,.) the Gaussian probability density function, and @ the parameters
in the model. The prior p(s1|0) is taken multinomial and p(xi|s1,8) Gaussian.

In this article we are concerned with models where the regimes s; have natural
refinements in sub-regimes as defined below. We will restrict ourselfs to models
with two levels: a fine grained and a coarse grained level. Extensions to multiple
levels are straightforward. At the coarse grained level, we refer to the discrete
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Fig. 1. A simple example: M = {4, B}, ch(A4) = {a1, a2}, and ch(B) = {b1}. Synthetic
data was generated from 6¢ (top; colors indicate regimes as they were generated). First,
posteriors for coarse regimes are inferred (middle). Then, with these results fixed,
refinements of A and B are inferred independently (bottom; only results for submodel
A are shown).

state as s, and to the continuous state as x;. We denote the set of regimes that
s¢ can take on with M. At the fine level we use r¢, y; and M¢. The hierarchy, or
grouping, we have in mind is a parent-child relationship ch(.): for every j € M
there is exactly one m € M, for which j € ch(m) holds.

In the multi-scale setup of this article there are two different models: one
for the coarse and one for the fine level. First the state and regime are in-
ferred in the coarse model. Then, given the posterior probabilities for the coarse
parent regimes, a refinement is inferred in the second model. Jeffrey’s rule
of conditioning is used to ensure that the posterior weights of the children
add up to that of the parent. A simple example with synthetic data is pre-
sented in Fig.1 (Matlab code with the full model description is available at
www.snn.kun.nl/~orzoeter/multiscale.html). The two model setup is dis-
cussed in Sect.2. In Sect. 3 restrictions for the fine level model are introduced
so that refinements of the coarse regimes can be inferred independently. This
way, in an on-line application, only probable regimes need to be explored in
greater detail. In Sect. 4 we show how a deterministic approximation overcomes
the computational complexity implied by the SLDS.

2 The Fine Level Model

The model for the first level is a basic SLDS. For the fine level model we want
to ensure that the posterior probabilities of being in a child of m sum to the
posterior probability of being in m in the coarse model:

Z Z p(ri.r|z1.1,0f) = p(s1.7|Z1.7,0c) -

T1 ECh(S1) ’I‘TECh(ST)



To enforce these constraints we introduce extra random variables §;.7 that have
a link satisfying

p(ry = jlri—1 = 4,3, =m,0;) =0, if j # ch(m), (1)

i.e. the link rules out the combination of a parent m with a “cousin” j. The
motivation behind the introduction of §; is that we can now put constraints on
the sum over possible values of r4: ) jech(m) p(re = jlz1.T, B%), instead of only on
individual values. If p(s1.7|21.7,0.) is crisp, making the fine model agree with
the coarse can be done by treating §1.1 as observations (“hard clamping”).

If, however, p(s1.r|z1.T,0:) is not crisp, for example if it is the result of
inference at the coarse level, we have to ensure that the marginal over §;.7 is
kept fixed to p*(81.7 = path;) = p(s1.7 = path;|z1.1, 8;) (“soft clamping”). This
is done by Jeffrey’s rule of conditioning;:

p* (311, .1, Y1.7|21:1, O8) = P(ri.7, 217|517, 217, BF) D" (81:7) (2)

We denote probabilities that have the constraints on §;.7 enforced with p*(.).

3 Independent Submodels

The fine level model described in Sect.2 ensures consistency with the already
inferred coarse model. It is however necessary to treat the refinements of all
coarse regimes together in one large model for the second level. In this section
we will alleviate this requirement by making appropriate choices for the state and
regime transtition probabilities such that the sub-models become independent.
The idea is that the model
is restricted such that when-
ever there is a switch in coarse
regimes (§;_1 # §;) the discrete
and continuous latent states
at the fine level uncouple (see
Fig. 2) I.e. when §t_1 75 §t,
{r¢,y+} does not depend on
{r¢—1,yi—1}. For the continous
state this is accomplished by Fig. 2. Graphical structure corresponding to
introducing a “reset” after a the fine level model. Left: when §_1 # &,
switch in §: the new state is right: when 5, 1 # .
drawn from a Gaussian prior:

N(yt; Ajyi-1,Q;) : l=m
N(ysvi, ) @ L#m.
The regime transition probability is constrained similarly:
0:j & ch(m) B-a)
p(re =jlre1 =4,8, 1 =1, =m,0¢) = ¢ II;_jm :l=m,j €ch(m) (3-0b)

P(Yelyi—1,7¢ = J,8¢—1 = 1,8, = m, 0;) = {

Tjim 21 #m,j €ch(m). (3—c)



Case (3-a) encodes the already discussed constraint that every child has only
one parent (1). Case (3-b) describes the probability of jumping between regimes
within one subtree (“brothers”). These probabilities are fully modeled. Case (3-
c) states that if a jump at the coarse level occurs, the fine level regime is drawn
from a prior. Note that, to make notation not too complex, we have left out
a possible dependence of y; on r; 1, and a dependence of r; on §;_;. Crucial
for the sub-models to become independent is only the conditional independence
depicted in Fig. 2 for the case §; 1 # .
The conditional independencies in the model allow us to write

T T
p(rir, yur|zrr, s1r, ) o [[ p(ze, ye, relyee1,me1, 50, 0¢) [ | p(ze, ye, 74|50, 0)
§tffi§f §th:/];£§t
T
= H { H P(Zta)’t,ﬁgm)|Yt71,7‘t(7,n1),§t = m,B(m)) X
meMe _t=2

§i—1=8;=m

T
[ p(ze e, ri™15 = m,e“”))} )
t=1
Si_1£§=m

where 8(™) are the disjoint parameter sets that together form 6, and rim) are
variables ranging over ch(m). The boundary ¢t = 1 can be taken into account by
setting 39 # m for all m.

The marginal p*(81.7) is fixed, so by (4) the posterior p*(81.7, 1.1, ¥Y1:7|21:7, O%)
in (2) factors into independent subtree terms. Therefore these terms, and hence
filtered or smoothed one-slice posteriors, can be computed independently.

4 Approximate Inference

4.1 The Coarse Level Model

The computational complexity of exact inference in an SLDS is exponential in
the number of observations. One way to see this is to look at the posterior

p(xtlzir) = ) p(xilsir, zir)p(siir|zir) |
81:T

where for notational convenience we drop the dependence on 6.. Every regime
history si.7 gives rise to a different Gaussian p(x¢|s1.T,21.7). Since s1.7 is not
observed, we have to take every possible history into account and integrate these
out. So the exact posterior is a mixture with |M.|T components. In this section
we therefore describe a greedy approximate inference strategy for the SLDS. An
adaptation for the fine level SLDS from Sect. 2 is presented in Sect. 4.2.

The approximation is a particular form of expectation propagation [4]. We
present it here in the spirit of the sum-product algorithm [3]. For ease of no-
tation and interpretability we treat u; = {s¢,x;} together as one conditionally



Gaussian distributed random variable. Slightly abusing notation, we will use the
sum sign for the combined operation of summing out s; and integrating out x;.
The posterior distribution can be written as a product of local potentials, 1:

T

plagrlzyr) o [T r(ue 1, up), with oy (g, 1) = p(ze|ug)p(ugu,_y),
t=1

and 91 (ug,u;) = p(z1|u;). We are interested in one and two-slice marginals
of the joint posterior. To avoid having to construct the entire posterior, these
marginals are computed by local operations where messages are sent between
nodes in a graph. We distinguish wvariable nodes that are associated with u;’s
and function nodes that are associated with ,’s. The message from 1), forward
to u is called ay(us) and the message from )y back to us—; is referred to as
Bt—1(uz—1). In a chain, variable nodes simply pass on the messages they receive.
The message passing scheme is depicted in Fig. 3.

We denote the approximation of
p(utly1.r) by ¢i(ug). It is computed
by multiplying all incoming mes-
sages from neighboring function nodes: ~ %1 ™ @) Bt P ) By P @)
g(ug) o oy(ug)Bi(uy). Associated
with every function node is an approxi-
mate two-slice belief that we denote by
p(ug—1,u¢|y1.7) & pr(us—1,us). Throughout the procedure we will ensure, using
greedy approximations, that both p; and ¢ are conditionally Gaussian (CQG)
distributed. New messages from function node 9, to variable node uy, where ¢/
can be t — 1 or t are computed as follows.

Fig. 3. Message propagation.

1. Construct a two-slice belief by multiplying the potential corresponding to
the local function node ; with all messages from neighboring variable nodes
to 1)y, yielding

ﬁt(utflaut) 0.8 Oétfl(utfl)wt(utflaut)ﬂt(ut) -

2. The one-slice marginal p;(uy) = >, Pe(ugr,ug), with ¢ = {t — 1,¢}\t,
is not CG, but more complex: for evergf value of sy, xy follows a mixture of
Gaussians. Find ¢y (uy) that approximates p;(uy) best in Kullback-Leibler
(KL) sense:

P (uy )

gy (uy) = argmin » pi(uy)log ——— .
(') geCaG Z (e g (ay)

u,s

It can be shown that gy follows by “collapsing” the mixture
gy (uyr) o COH&PSG< Z ﬁt(ut“,ut)) .

Uy,

Where Collapse(pi; N (x; pij, £ij)) = piN (x5 iy, £5), with p; = 37, pij, p; =
> i Pilitijy X5 = 25 Piti (Zig + (g — py) (i — )") 5 and py; = pij/pj.



3. Infer the new message by division. All messages not sent from ; remain
fixed, in particular 8; and a;_1, so new messages are computed as

qt—l(ut—l)
at—l(ut—l)

g1 (uy)
Bi(uy) ’

For filtering the messages are initialized with 1, and steps 1. to 3. are performed
for t = 1 : T sequentially. For the best smoothed posterior the above steps are
iterated (e.g. using forward-backward passes) until convergence.

Fixed points of steps 1. to 3. correspond to stationary points of a “Bethe free
energy”

Fep (D, q) Z Z Pr(ug—1,e 108; Zz(h ;) loggi(uy) , (5)

t w1t

Bi—1 (llt—1) =

a(uy) =

subject to the constraints that all p;’s and ¢;’s sum to 1, and “weak” consistency
constraints:

COH&pSG( Z Pe(u—1, Ut)) =q(w) = COH&pSG( Z Pr1(ug, Ut+1)) .

ut—1 Ut41

This relationship is analogous to the one between the Bethe free energy and
loopy belief propagation [6]. The only difference is that the strong consistency
constraints are replaced by the weak ones: i.e. here overlapping beliefs only have
to agree on their ezpectations. The proof of this claim is similar to the one in [6]
and follows by constructing the Lagrangian and setting its derivatives to 0. In
the resulting stationary conditions the Lagrange multipliers added for the weak
consistency constraints have a one-to-one correspondence with messages oy and
B¢: the multipliers form the canonical parameters of the messages. Given this
relationship the mapping between fixed points of the message passing scheme
and stationary of points of Fgp follows easily.

Iterating above steps can be seen as a procedure that greedily tries to find one
and two-slice marginals that approximate the exact beliefs as good as possible
and are pairwise consistent after a collapse. The details of the approximation
are beyond the scope of this text. We refer the interested reader to [2].

4.2 The Fine Level Model

At the fine level we treat the marginal p*(31.7) = p(s1.7|21.1, ), as fixed and
use Jeffrey’s rule of conditioning and the extra 3; nodes to ensure that the
fine level model is consistent with the coarse level model. In the approximate
inference procedure described in the previous section p(s1.7|z1.1, 0¢) is approx-
imated by overlapping two-slice marginals. We use these to enforce consistency:
p(8¢-1, 8¢|Z1.1, 05) = Pr(st—1,5¢)- So, effectively, distant interactions are disre-
garded.

We will first describe an approximation scheme for the general fine level
model and deal with independent sub-models later. The approximation is based



on a free energy identical to (5) but now with definition u; = {8, 7, y:} and the
constraints that all p;’s and ¢g;’s sum to one replaced by

Z Pe(wi—1,us) = p*(84-1,5¢)

Tt—1,t,Yt—1,t

(since ) 5 . p*(8t-1,8:) = 1 proper normalization is automatically enforced).
In the way new messages are computed only the first step needs to be changed:

1". Construct a two-slice belief that has the correct marginal over §;_; 4:

o a1 (1) (wg—1, 1) By ()
E;t;ll,tt a1 (ug1)P(ug 1, ) Be(uy

Fixed points of this new message passing scheme correspond to stationary
points of Fgp with the changed normalization constraints. The proof is analogous
to the proof for the standard case presented in Sect.4.1. (see also [5] for a related
algorithm). The intuition behind the free energy is similar: the adapted message
passing scheme tries to find one and two-slice marginals that approximate the
exact beliefs as good as possible, are pairwise consistent after a collapse, and are
consistent with the soft-assignments to regimes in the coarse level model.

Having established a way to infer posteriors for a general fine level model, we
now adapt the above message passing scheme such that independent sub-models
as described in Sect. 3 can be handled independently.

One possible way to adapt the scheme is to work with discrete variables
(™) that range over ch(m) U m, where m is a special state that encodes “not
in subtree m”. This would however imply some inefficiency, since when we are
refining regime m we are not interested in a continuous state associated with
m, nor in the mode p;(m,m). Instead, the inference algorithm for sub-model
m only computes the required parts of the two-slice joint p;. In the remainder

De(ug—1, 1) )p*(gt—l,t) .

define u, = {rgm),yt} and

¢§mm)(ut—1,t) = p(Z¢, ug|uy_1,51 = 5 =m, 6(™)
¢§mm)(ut) = p(zg, w31 # 5 = m,0™)

with ¢§mm)(u0,1) =0 and ¢§mm)(u0) = p(z1, 11|51, 6™).
To infer the refinements of the coarse regime m we use the message passing
scheme of the general fine level, but with steps 1. and 2. adapted as follows.

1”. Construct the required parts of the two-slice marginal as
-1
™™ (W1 4) = p*(Bso1 = 8 = m) (ngm)) 1 (o)™ (m1,0) Be ()
_ _ -1,
™ ) = p*Gomr # 50 = m) (Z0™™) 9™ (ug) ()
(mm) - <\ (mm)) T
A" (W) = p G =m#3)(2) a1 (we)

with Z{™™, Z™™ and Z{™™ the proper normalization constants of the
r.h.s. before weighting with p*.



(mm)

2". In a forward pass compute g;(u;) = Collapse (pt (ug) + pﬁf’””) (ut)). In
a backward pass compute g;_; (u;_;) = Collapse (ﬁgmm) (ug_y1) + ﬁgmm) (ut_l)) )

The exposition has been restricted to two levels, but we can extend the
approach to any number of scales. The approximations of p*(r;_1 = ¢ = j|z1.1),
p*(ri_1 = j # r¢|z1.7), and p*(ry_1 # j = r¢|z1.7) form the constraints for the
refinements of regime j and can be computed from the p;’s.

5 Discussion

We have introduced a class of switching linear dynamical system models that
allows iterative refinement of regimes. If properly restricted, the models at levels
of finer detail can be inferred independently. One of the advantages of this is
that relatively complex models can be tracked at reasonable computational costs
since only those regimes that have reasonable probability need to be refined. For
instance to refine coarse regime A in Fig.1, ¢t = 45 : 70 can be disregarded.

The hierarchy and independence between sub-models allows recursive maxi-
mum likelihood fitting of parameters using an EM algorithm. In [7] this approach
is used to interactively fit a hierarchical SLDS. An appealing line of future re-
search is to use the multi-scale setup as a basis for greedy model learning.

The notion of multiple scales in statistical models is not new. There are many
uses of multi-scale models in various disciplines. Our method shares with [1]
the “top-down” construction of the hierarchy and the use of Jeffrey’s rule to
synchronize models at different scales. To our knowledge the work presented
here is the first to enforce constraints in hybrid models for which exact inference
is intractable. The approximate inference method from Sect. 4.2 is very general.
Extensions to trees, or even structures containing cycles, are possible. It therefore
paves the way for interesting combinations of previously proposed multi-scale
models.
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