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Abstract

We propose a novel visualization algorithm for high-dimensional time-series data. In contrast to most
visualization techniques we do not assume consecutive data points to be independent. The basic model is a
linear dynamical system which can be seen as a dynamic extension of a probabilistic principal component
model. A further extension to a particular switching linear dynamical system allows a representation
of complex data onto multiple and even a hierarchy of plots. Using sensible approximations based on
expectation propagation the projections can be performed in essentially the same order complexity as
its static counterpart. We apply our method on a real-world data set with sensor readings from a paper

machine.

Keywords — data visualization, time-series, latent variables, principal compo-

nent analysis, switching linear dynamical systems, approximate inference

[. INTRODUCTION

A data visualization problem can be interpreted as a learning and inference problem in
a probabilistic generative model. In many settings, the goal of visualization is to show the
user a projection of a high-dimensional dataset onto a lower-dimensional manifold, which
often (and also in this article) is taken to be two-dimensional. The coordinates on this
manifold can be treated as latent variables x. The high-dimensional observations y are
related to the latent variables through a probabilistic generative model p(y|x, @), with @
the parameters of the model. Given a set of observations yi.r, a projection can be made by
plotting the posterior means E[x;|y1.7, ] for all ¢, where the average is over the posterior

p(X1r|yir, 0) o p(x1.7|0) HP(Yt|Xt, 0),
t

with p(x1.7|@) the prior distribution of the latent variables. An elegant example of this
is the probabilistic principal component analysis (PPCA) model presented in [1], or the
equivalent and independently proposed sensible principal component analysis model [2].
In this model all observations are assumed to be independent, which is reflected in a
factorized prior for the latent variables. The projection is linear and both the prior and

output noise model are spherical Gaussians:

p(Xt|9) = N(Xt;O,I)
p(yi|x,0) = N(y;Cxp+ p,r?I).
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(a) Data (b) PCA projection (c) LDS projection (d) LDS projection

of permuted data

Fig. 1. PCA and LDS projections of toy data. Note that the scale and orientation of the projections are

not identified and can be chosen arbitrarily. The same curve can be seen in all three projections.

In the above N(.;.,.) denotes the Gaussian probability density function. Since Cx; is
a linear combination of the two columns of C', this model describes a 2D hyperplane in
observation space. To take into account that we do not expect the data to lie exactly on this
2D hyperplane, Gaussian noise with covariance r2I is added in the remaining directions.
In [1] it is shown that such a model, with @ = {C, u, 7%} set to its maximum likelihood
value, is functionally equivalent to the well-known principal component analysis model.
The high-dimensional data will be projected onto the principal subspace, the columns of
C span this principal subspace, and 72 can be interpreted as the variance that is lost by
projecting.

Although (P)PCA is a useful method for many applications, it is suboptimal for time-
series data, where the independence assumption is clearly violated. In this article we
therefore use a linear dynamical system (LDS) also known as Kalman filter model for the
visualization of time-series data. An LDS with spherical observation noise can be inter-
preted as “PPCA through time”. In addition to the standard PPCA model, dependencies

between observations are modeled by linear Gaussian transitions on the latent variables

p(XH-l‘Xta 0) = N(Xt+1; Axy, Q) )

where @ now also includes the matrices A and (). A suitable prior distribution for x; is

discussed in Appendix A.

April 8, 2003 DRAFT



4

The latent variables in the LDS model do not only provide a representation of the
structure of the data within one time step, but also between time steps. Whereas in
the static (PPCA) case the posterior factorizes: E[x:|yi.r, 0] = E[x:|y:, 0], and the data
points are projected independently, in the LDS case the posterior does not factorize and
the entire data sequence will contribute to the projection of y;. The linear transition
A can be thought of as a parameter of Brownian motion in latent space. An A matrix
close to 0 indicates that the correlation between observations is very low (with A = 0
PPCA is retrieved): the projection of previous and future observations will give very
little information about the projection of the current observation. When A is close to I,
successive points are expected to lie close together and the data trajectory is expected to
be smooth.

A toy problem illustrates these intuitions. Figure 1(a) shows an artificial data set.
The underlying true trajectory of the system is presented with a solid line, dots give
noisy measurements. A PCA projection is given in Figure 1(b) revealing some of the
structure, but still masking the relative smooth trajectory through time. In Figure 1(c)
the same data is visualized using an LDS, showing clearly the smooth and relatively regular
trajectory. Since the PPCA model assumes the data to be independent, a permuted version
of the data set would result in an identical projection. For the LDS, which explicitly
tries to model dependencies, we do obtain a different projection. The LDS projection
of a random permutation of the data set in Figure 1(d) is hardly distinguishable from
the PCA projection (as explained in Appendix A, since the scale and orientation of the
projection cannot be identified from the data, we are allowed to rotate the figure 180° to
see the similarities). The impact of a random permutation is also reflected in the maximum
likelihood estimate of A, which is roughly .997 for the original projection in Figure 1(c)
and .07 for the second one in Figure 1(d).

Many real-world phenomena show structures at different levels of detail. For instance
in an industrial process clusters on the largest scale may correspond to normal production
and failure modes. A single projection would only reveal these already very well known
clusters. To make the proposed visualization method useful for exploratory purposes we

extend it such that interactively sub-models can be fitted. In Section II, after discussing
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the LDS projection in more detail, we extend the underlying model to a switching linear
dynamical system (SLDS). This allows a projection onto multiple plots. In Section III
this SLDS model is extended further such that sub-models can be fitted recursively. From
the perspective of an end user this corresponds to zooming in on areas of interest. From
a modeler’s point of view it can be seen as adding extra degrees of freedom in regions
where it is needed. This dynamical hierarchy is an extension of the model presented in [3].
We apply the model in Section V on a real-world data set with high-dimensional sensor

readings of a running paper machine.

II. VISUALIZATION WITH AN SLDS
A. MAXIMUM LIKELIHOOD

Given a data set yi.7, we find the maximum likelihood settings of the parameters in the
LDS
O, = argznaxp(yl:ﬂO) ,
using an EM-algorithm. A local maximum! is found by alternating an Expectation step
in which posteriors p(x¢|y1.1,0014) are inferred using the well-known Kalman smoother,

and a Maximization step in which the expected complete data log-likelihood

A

‘C’(O) = Ep(X1:T|y1:T,901d) [logp(XLT’ }’1;T‘0)] )

is maximized w.r.t. 8. The standard EM-algorithm for an LDS is well known. It is a
special case of the E-step outlined in Section IV and the M-step presented in Appendix C.
It can easily account for missing observations. For initialization, we use the crude PPCA
estimate proposed in [3] with A = 0.

To ensure the interpretability of the final projections, the EM-algorithm must be im-

plemented with some care. Details are given in Appendix A.

B. MULTIPLE PLOTS

In an LDS for visualization, we model the high-dimensional data with a single two-

dimensional hyperplane, yielding a single projection. Here we extend the LDS to a switch-
'In the LDS model with the stationary distribution as prior one can show that there is only a single plateau
of invariant parameter settings that have equal likelihood. When the model is extended in Section II-B the

EM-algorithm can only be guaranteed to find a local maximum.
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Fig. 2. A switching linear dynamical system. The dynamic switches s; determine both the dynamics in

the continuous latent variables x; and the link between x; and the observations yy;.

ing linear dynamical system (SLDS) that allows projection onto multiple plots. That is,
the SLDS describes the data as if generated from a dynamic mizture of two-dimensional
hyperplanes. Alternatively, the model can be seen as a dynamic extension of the mixtures
of PPCA model, where now both the continuous and discrete latent variables are dynamic
rather than static.

With every observation y; we associate a continuous latent variable x;, tracking the state
of the system, and a discrete latent variable s;, representing the current regime. Within
every regime the state follows a simple LDS. The regime itself is governed by a first-order
Markov process.

The complete model that we consider here reads

(541 = jlsi =14,0) = ;4
P(Xey1[Xt, St = 1, 8141 = 5, 0)
N (xep15 Ajxe, Q) 11 =]
N (x44150,55) 14 # j

p(}’t|Xt; S; =1, 0) = N(Yt; Cixy + p;, T?I) .

The corresponding Bayesian network representation is visualized in Figure 2.

Any of the approaches described in Appendix A can be taken to define priors for x;|s; =4
and s; itself. As can be seen from (1), x;, the state of the system, is ‘reset’ after a regime
switch and a new state is drawn from a Gaussian prior. This reset effectively decouples
the latent axes of the different regimes. We can take the mean of the Gaussian prior equal
to 0 without loss of generality.

In principle every observation is projected onto every plot at its corresponding posterior
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mean, e.g. for plot i: E[x;|s; = i, y1.7, Oms]. The regime posterior p(s; = i|y1.1, @) can
then be taken as the amount of ‘ink’ that is to be used [3]. Alternatively, one can choose
to plot only those projections that have p(s; = i|y1.7, Om1) larger than a preset threshold.
Recall that in the dynamic model the posterior does not factorize, so in contrast to [3] we
have p(s; = iy1.r, 0) # p(selye, 0).

The ML-estimate @y, which includes all parameters of the model ({C;, u;, 72, A;, Qi }
for all 4, the transition matrix I and perhaps extra parameters for specifying the priors),
can again be found using an EM-procedure. This, however, is somewhat more complicated
then for the LDS presented above. A first difficulty is that straightforward ML estimation
may cause problems: II;_,; can become 0 if certain regime transitions do not occur, which
in general is undesirable. Also if there are many different regimes, r?’s may reduce to 0.
These problems can be prevented by using conjugate priors and computing MAP estimates.

A second, more important problem is the selection of an appropriate number of regimes
M and an initial parameter setting for EM. These are well-known problems for Gaussian
mixtures and also occur in the SLDS model. For data exploration Bishop and Tipping [3]
propose an interactive approach, which we adopt here: the data is first projected onto
a single plot, after which the user selects the number of regimes and their approximate
center locations using mouse clicks. The clicked locations can be projected back onto the
high-dimensional space. There, a rough clustering and plane fitting routine provides initial
estimates for EM. As for the LDS, we initialize A; = 0, i.e. the initial parameter settings
are identical to the mixture of PPCAs model in [3].

The last and most difficult problem is that exact inference in a general SLDS is NP-
hard [4], i.e. computing the required posteriors would take time and memory requirements
exponential in the number of observations. Strictly speaking the reset after a regime
switch makes the complexity of inference polynomial in the length of the sequence?, but

this is still unacceptable for a data exploration application. In Section IV we introduce

2 Only when a regime started and when it ended is relevant. Differences in regime history before a reset do not
result in a different mode in a smoothed posterior. The exact posteriors for the first and last time slice have only
MT different modes. Posteriors for slices in the middle of the sequence have O(MT?) modes. Since the running
time of the Kalman smoother is linear in T, treating all other quantities as a constant, exact inference could be

performed in O(T*) time.
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an approximate inference (E-step) scheme that fits very well with the characteristics of
the visualization problem. The M-step is straightforward and can be computed without
further approximations given the approximate inference results (see Appendix C for the
update equations). Although the complexity of the complete algorithm is slightly higher
than that of a mixture of PPCAs it scales linearly with d, the dimensionality of the
observations, and 7', the length of the sequence. Therefore we expect it to be appropriate

in all the situations that the static model can be used (for further details see Appendix B).

III. DIFFERENT LEVELS OF DETAIL

The projection onto a single plot can be seen as the top level of a hierarchy of plots. An
example is given in Figure 6. The plots produced by the SLDS form a second level. We
can extend the SLDS model by adding a third and, recursively, subsequent levels. The top
plot then gives a coarse grained overview of the data, allowing the user to interactively
zoom in on non-trivial phenomena in the subtrees. Such an approach is taken by [3] for a
mixture of PPCAs. In this section we show that with appropriate constraints, the same
can be done for time-series data.

The model for the third level has to ensure that the first two levels are extended into
a hierarchy, e.g. in Figure 6 the third level is not the result of an arbitrary SLDS with 9
possible regimes, but constructed such that regimes (plots) refine regimes from the second
level that were already studied and identified by the user. A second requirement for the new
model is that when we expand the hierarchy to have many levels both the computational
complexity and the number of free parameters should stay within reasonable bounds. We
will describe a model that meets the first requirement in Section III-A and refine it in

Section ITI-B such that the second is also met.

A. Constrained inference

The generative model that extends the second level is visualized in Figure 3(a). It is
essentially also an SLDS and represents a collection of plots at the third level. Note that
this model only generates the plots for the third level. Within this section we will use s;.7
to refer to the switches for the plots in the third layer. To avoid confusion we use @°*"

and rq.7 to refer to the parameters and switches from the model that produced the plots
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(a) General case (b) When ry_1 # 7.

Fig. 3. Graphical structure corresponding to the third and subsequent levels of the hierarchical switching

linear dynamical system.

for the second layer (Section II-B, Figure 2), which are fixed at this stage. By clicking at
locations in a parent plot the user determines the number of child plots and approximate
initial estimates for EM, as sketched in Section II-B. We refer to the implied parent-child
relationship with pa(.), i.e. pa(j) = m is true if and only if subplot j’s initial parameter
settings for EM were computed based on the user’s mouse-click in plot m. Similarly, we
use ch (m) to denote all children of m.

To obtain a proper hierarchy all points in the parent should be visible in some child,
but no new points should reappear. The strictest choice of requirements that enforces this
is:

> plsurlyir, 0) = p(rizlyvr, °) (2)

s1.r€ch(ri.r)

where the shorthand is defined as si.7 € ch (r.7) iff for all s;: s € ch(ry). It is perhaps
important to emphasize that the approach of fixing p(r1.7|y1., 0°*") is motivated by the
fact that we do not want to change the plots from the second level once these have been
shown to the user. In a different setting, e.g. if inference was done on a globel model,
jointly over both the second and the third level, the posteriors over s;.7 and r;.7 might be
different. This is due to the fact that, if we define a parent-child relationship, regimes at
the third level influence regimes at the second and vice versa.

We will first show how to satisfy (2) in the case that there is a known sequence 71.7. In
this case the constraint (2) simplifies to

Y. psialyir,6) =1, (3)

s1.7€ch(ry.T)
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To be able to enforce constraints on sums of s;.7 we extend the state space with the switch

states of the parent level (see Figure 3). The link connecting r, with s; is defined to satisfy

P(St+1l8t = 4,741,0) = 0, if 5441 & ch (ry41). (4)

This ensures that, for every history s;.o with at least one s; & ch(r;), the conditional
posterior p(s1.7|r1.7, ¥1.7, @) is 0. And, therefore, we get Zsl:TEch(n:T) p(sir|rir, yiT, 0) =
1, as required. So in the case that ri.p is known, we can simply treat the extra switches
as regular observations. Since in practice we observe that the posterior probabilities are
close to being crisp, simply rounding off the posteriors at the parent level, and clamping
r1.7 would give a reasonable approximation.

In the general case we cannot treat r1.r as observed. Instead, we keep its marginal fixed
to p(ri.r|yir, 0°) (soft-clamping). We will use the shorthand p*(r1.r) = p(ri.r|y i1, 0°%).
Soft clamping is performed using Jeffrey’s rule of conditioning. In the current setting the

marginal on ry.7 is fixed by:

p* (TI:Ta S1:T, XI:T‘YI:T) = p(sl:Ta XI:T‘TI:Ta YI:T)p* (TI:T) ) (5)

The fact that r1.7 are soft-clamped cannot be denoted in the same way as the hard clamped
yi.r (e.g. distributions over 7. are still defined asin (5)). We will use p*(-) for probabilities
that have the constraints on ;.7 enforced.
Since (4) enforces the child parent relationship, for a given sequence si.z, only the
sequence 71,7 = pa(si.r) has p(s1.7, r1.7|y1.r,0) # 0. So we have:
ZP(SLT, 7“1:T|.Y1:T, 0) = p(81:T, ™. = Pa(81:T)|Y1:T, 0) . (6)
T1.T

Hence the posterior over s;.7 has the property

Z p*(sirlynr,0) = Z p*(s1r, rir|y1r, 0)  (by (6))

sy.r€ch(ry.r) s1.7€ch(ry.r)

- Z p(sur|rir, yur, 0)p*(rir)  (by (5))

s1r€ch(ry.r)

= p'(rr) (by (4))-

So the third level model can be made to agree with the second level model in the sense

of (2). However, this cannot be done in reasonable time, since the constraints are over
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(MPa)T possible paths ri.7, where MP?" is the number of plots at the parent level. In

Section IV-A we show how a reasonable approximation can be made.

B. Independent sub-models

We will now address the second requirement of the model and show that a reasonable
choice for the regime transition probabilities p(ssy1|se, 711, @) allows a depth first expan-
sion of the tree and prevents a blow up of free parameters. Recall that a switch between
any two regimes renders the current state x; independent of x;_; (1), so updates for the
“inter-slice” parameters A and () will not depend on statistics from other subtrees. To
get a similar property for the transition probabilities we restrict the probabilities of jumps

between plots from different subtrees (“cousins”):

P(si41 = Jlse =4,m41 =1,0) (7)
0 : pa(j) #1 (7—a)

Iy @ pa(i) =pa(j) =1 (7—0)
min ¢ pa(i) #l=pa(j). (7T—c)

Case (7-a) encodes the above introduced constraint that every child has only one parent.
Case (7-b) states that if we stay within the same subtree, the probability of jumping
between plots within one subtree (“brothers”) is fully modelled. Case (7-c) states that if
there is a jump on the parent level, the new child is drawn from a prior. Since we (soft)
clamp the values of r1.r there is no direct need for a definition of transition probabilities
p(reg1]re,0). To define a self-contained model we define p(ry1|rs, @) = p(rev1|rs, 7).
The arcs in Figure 6 show examples of the different transitions; the learned transition
probabilities are plotted in Figure 5.

The specified model now has the property that {s; 1,x; 1} and {s;,x;} uncouple in the

case of a switch between subtrees (Figure 3(b)). The conditional independencies in the
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model allow the posterior to be written as:

T T
p(sur, Xur|yrr, rir, 0) H p(¥e, X, St|Xt—1, St—-1,71, 0) H p(¥e, Xt, st[re, 0)
thfim mf?;}ﬁrt
Mmpar T
= H { H p(yt,Xt,ng)|Xt,1,8£T_n%,Tt =m, e(m))
m=1 t=2
Tt—1=Tt=m
T
H p(yt,Xt,ng)‘Tt =m, o(m))} ) (8)
t=1

rt—1F£Te=m

where 8™ are the disjoint parameter sets that together form 6:
e(m) = {ﬁ]\m: Hz—)]|m: A]7 Q]7 E]? CJ7 l,l,], T]2|pa‘(7’) = pa(]) = m} ’

and sﬁm) are variables ranging over ch (m). The boundary ¢ = 1 can be taken into account
by setting ro # m for all m.
If we use the conditional independencies in (8) to rewrite the expected log-likelihood L

we see that it factors into a sum of subtree terms:

‘C(e) = EP*(81;T,x1;T,7‘1;T\Y1;T,901d) [logp(rltTa ST, X1, y11T|0)] (9)
Mmpar

= const + Z Z EPZ (m;n) [log 7Tj|m:| + Ep; (mm [log Hi_,j‘m]

+ Epz (%L) [IOgN(Xt; 0, Zg)] + Epg(njz;n) [lOgN(Xt; A]‘Xt—la Q])]
+ EP: (T) [lOgN(Yt; ijt + Hejs TJQI)]

Mpa.r

const + Z L (™)
m=1

In the above const is a constant independent of @ introduced by the logri.; term, and

p*(.) denote the appropriate one and two-slice posteriors:

p; (M) = pr(ri—1 #m,ry=m, s = jlyir, Ooia) (10)
P: ("zbgm) = p*(Tt—l =Ty =Mm,S5_1=1,5 = J, X1, Xt|Y1:T, Oold) (11)
p; (77) = p'(re=m,8-1# j, 5 = J, X¢|y1.1, Oota) (12)
p; (7) = p'(re=m,s = j, x|yt Ooa) , (13)
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where at the boundary ¢ = 1 we define p; (") = 0 and p} (™}") = pi (77) = p; (7).

The marginal p*(r1.7) is fixed, so by (8) the required posterior p*(s1.1, X1.1, r1.7|¥1:7, Oo1d)
in (9) factors into independent subtree terms. Therefore these terms, and hence the
required statistics (10) to (13), can be computed independently. Furthermore, changes
in 0™ only affect the posterior terms corresponding to m, so £ with n # m remains
unchanged.

The normalization constraints » ; mj,, = 1 and . II; ), = 1, by definition (7), can
be rewritten as ) (m) Tjjm = 1 and Y ) I jm = 1. Combining above observations we
conclude that we can maximize £ w.r.t. @ by independently maximizing every £™ w.r.t.
0™ under local normalization constraints, i.e. subtrees can be expanded independently
depth-first.

In practice for many time slices p*(r, = m) will be close to 0, so the amount of “ink”
attributed to y; in any subplot in m will be so low that y; is never projected in subtree
m. We can therefore safely consider only those sub-sequences of y;.7 that have significant
weight in parent m of the second layer. This results in a considerable speed-up.

The posteriors p*(s1.7|y1.7, @wmr,) form the constraints for a subsequent layer. This way,
the user can keep adding layers of subplots recursively, until all relevant clusters can be

inspected and interpreted.

IV. APPROXIMATE INFERENCE IN AN SLDS

With the above choices, many of the appealing features of the static versions of (hi-
erarchical) PPCA apply to the dynamic extension proposed in this article. There is one
important difference: exact inference in the E-step of the EM-algorithm is practically
infeasible for switching linear dynamical systems. One way to see this is to consider pos-
teriors over the state of the system, e.g. p(x;|y1.1, @o1q)- In a general SLDS this posterior

has M7 modes:

p(Xt|Y1:T, oold) = ZP(Xt\SlzT,Yl:T, oold)p(sl:T‘YI:T: oold) )

$1:T
one mode for every possible regime history si.. Although strictly speaking the reset
dynamics in the current model reduces the complexity to become polynomial (see the

footnote on page 7), this is in an interactive visualization application still unacceptable.

April 8, 2003 DRAFT



14

In this section we therefore describe a greedy approximate inference strategy for the SLDS.
An extension to the model for the third and subsequent levels is presented in Section IV-A.
The algorithm can be interpreted as approximate belief propagation and is a particular
form of ezpectation propagation [5]. The filtering pass of this approximation has been
proposed independently several times. The oldest reference we are aware of is in [6], in the
engineering literature it is known as generalized pseudo Bayes 2 (GPB2) [7]. The basic
idea is to approximate posteriors such as p(x;|s; = i,y1.7) (where for ease of notation we
leave out the dependency on the model parameters 6,4) with a single Gaussian instead of
keeping the exact mixture. In the context of visualization, where we are only interested
in the mean, this is well justified. Our method works for a general SLDS, but benefits for
this particular model automatically from the simplification introduced by the ‘reset’ after
a regime switch.

The intuition behind the method is best understood by considering the filtering pass.
The exact posterior p(xi, s1|y1) is conditionally Gaussian (CG) distributed; conditioned
on si, X1 is Gaussian distributed. However the posterior

p(x2, S2|y1:2) / ZP X1, X2, 51, 52(Y1:2)
dx1 S1
is not conditionally Gaussian anymore, but of a more complex form; conditioned on s, = 1,
Xy is a mixture of two Gaussians (one for the case s; # i and one for s; = 7). Instead
of using this exact form to recursively compute the posterior for the third time slice (and
thus introducing a rapid growth of complexity in time) we first approximate it by ¢(x2, s9),
the conditionally Gaussian distribution closest in Kullback-Leibler (KL) divergence to the

original mixture, where

P\X2, S2|Y1:2
L (pllg) = E /d p(X2, S2|y12) log ————= i | )
X2

q(x2, 52)
It can easily be shown that minimizing the above KL divergence boils down to moment

matching or a collapse of the mixture (see e.g. [8]). We will use the notation

Collapse (Z p(s, T, x)) = argmin KL (Zp s,1,x)||q(r, X)) .

qeCG
Define p(s = i,7 = j,x) = pi;N'(x; p;5, Xi;), then Collapse(d, p(s,r,x)) = q(r,x) with
q(r = j,x) = pN (x5, %)), pj = 25 Pijs By = D Dijibegs 25 = 22 Pifi(Si + (B —
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Fig. 4. Message propagation.
p) (i —p)"), and py; = pij/p;. A recursive filtering procedure based on such a collapse
keeps M Gaussians, one for each switch state, in every time slice.
The algorithm we propose here can be seen as the extension of the above scheme with an
analogous smoothing pass. The presentation is in spirit of the sum-product algorithm [9].

The posterior distribution can be written as a product of local potentials, 1),:

T
p(z1r|yir) o Hlﬁt(zt_l,zt)
t=1

¢1(Z0,Z1) = P(Y1|Z1)
Vi(2e-1,2:) = p(yelze)p(2e|zi—1), 1> 1.

For ease of notation and interpretability we treat z, = {s;,x;} together as one CG dis-
tributed random variable. Slightly abusing notation, we will use the sum sign for the
combined operation of summing out s; and integrating out x;. We are interested in one
and two-slice marginals of the joint posterior. To avoid having to construct the entire pos-
terior, these marginals are computed by local operations where messages are sent between
nodes in a graph. We distinguish variable nodes that are associated with z,’s and function
nodes that are associated with v,’s. The message from 1, forward to z; is called ay(z;)
and the message from v, back to z;_; is referred to as fB;_i(z(—1). In a chain, variable
nodes simply pass on the messages they receive. The message passing scheme is depicted
in Figure 4.

We denote the approximation of p(z;|y1.r) by ¢(z:). It is computed by multiplying
all incoming messages from neighboring function nodes: ¢;(z;) o (z)B;(z;). Asso-
ciated with every function node is an approximate two-slice belief that we denote by
(241,24 |y1.7) = Pi(Zi—1,2:). Now new messages from function node 1, to variable node
z;, where t' can be t — 1 or t, are computed as follows:

1. Construct a two-slice belief by multiplying the potential corresponding to the local

function node v; with all messages from neighboring variable nodes to v, yielding

ﬁt(ZtA,Zt) (8 atfl(ztfl)wt(ztflaZt)ﬁt(zt) .

April 8, 2003 DRAFT



16

2. Find the one-slice marginal gy (zy) which is conditionally Gaussian but approximates

Pi(zy) best in KL sense by:

q:(z;) o< Collapse Z Pe(zer,24) |

Ztll

where ¢ is {t — 1,t}\t'.
3. Infer the new message by division. All messages not sent from v, remain fixed, in

particular 8; and oy_1, so new messages are computed as:

Oét(Zt) = ;i((ztt; ) ﬁt—l(Zt—1) = w .

Oét—l(Zt—l)
If all messages are initialized with 1 the first forward pass of this algorithm performs the

filtering scheme sketched above. Readers familiar with the HMM can easily verify that if we
identify oy_1(z¢—1) < p(z4_1|y14-1) and Bi(z;) o p(yer1.7|2¢) this algorithm is equivalent
to the familiar forward-backward algorithm if applied to the fully discrete HMM (where
a collapse is not necessary and the KL minimization results in exact marginalization).
Similarly the algorithm would be equivalent to the two filter form of the forward backward
algorithm if used for the Kalman filter model.

An important difference is that in the HMM and the Kalman filter case the forward
and backward passes can be done independently, since on the forward pass multiplying
by f£; in step 1 and dividing again by f; in step 3 is superfluous since “multiplication
+ marginalization + division = marginalization”. However “multiplication + collapse
+ division # collapse”, hence for the SLDS the forward and backward passes cannot be
done independently, changes in £’s on the backward pass would result in different o’s in
a new forward pass and vice versa for changes in a’s. We should therefore iterate forward
and backward passes. Pseudo code for the approximate inference procedure is given in
Algorithm 1. The “proportional to” assignment (o) is defined as the assignment of the
r.h.s. to the Lh.s. after a normalization. At the boundaries we keep messages oy = 1 and
Br = 1 throughout the procedure, or alternatively we treat the ¢ = 1 in line 9 and the

t =T in line 14 as special cases.
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Fixed points of Algorithm 1 correspond to fixed points of a “Bethe free energy” [10]:

Fer(prq) = Z Z Di(Zt-1,2t) log% - ZZCIt(Zt) log ¢:(z¢) (14)

t Zi—14 Zt

subject to the constraints that all p;’s and ¢;’s sum to 1, and “weak” consistency con-

straints:

Collapse (Zﬁt(zt—h Zt)) = q;(z;) = Collapse (Zﬁt+1(zt;zt+1)) -

7t 1 Zi 1
This relationship is analogous to the one between the Bethe free energy and loopy be-
lief propagation [11]. The only difference is that the strong consistency constraints are
replaced by the weak ones: i.e. here overlapping beliefs only have to agree on their ezpec-
tations. The proof of this claim is similar to the one in [11] and follows by constructing
the Lagrangian and setting its derivatives to 0. In the resulting stationary conditions the
Lagrange multipliers added for the weak consistency constraints have a one-to-one cor-
respondence with messages «; and (;: the multipliers form the canonical parameters of
the messages. Given this relationship the mapping between fixed points of the message
passing scheme and stationary of points of Fgp follows easily.

So Algorithm 1 can be seen as a procedure that greedily tries to find one and two-
slice marginals that approximate the exact beliefs as good as possible and are pairwise
consistent after a collapse.

Full details of the approximation are beyond the scope of this text. We refer the in-
terested reader to [12]. This article presents an algorithm guaranteed to converge to a
minimum of Fgp and discusses stability properties of expectation propagation. It also

provides extensive simulations to show empirically the validity of the method.

A. APPROXIMATE INFERENCE WITH CONSTRAINTS

The model for the third and subsequent layers has additional variables r1.; to enforce
the hierarchy interpretation of the visualization method. In the inference step we keep
the marginal over 7.1 fixed to p*(r1.7) = p(rir|y1r, 6°*). We are interested in one and
two-slice marginals of p*(r1.1, $1.7, X1.7|y1.7, @) as defined in (5). Just as with inference

in the SLDS without constraints this problem cannot be tackled in a reasonable time. In
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Algorithm 1 Approximate inference in an SLDS
ap <=1

fort=1to T do

O!t(Zt) <=1
Bi(ze) <= 1
p(yilze)p(z) @ t=1

5: V(2 1,2,) <=
p(yilze)p(ze|ze—1) :+ t>1

end for
while —converged do
for t =1 to T do {Filtering}
Pe(Ze-1,2) X 1 (Z4—1) Ve (Z1—1, 2¢) Be (24)
10: q:(z¢) < Collapse (ZZH Do (241, zt))
o (z) < 22
end for
for t =T to 2 do {Smoothing}
Pe(Ze—1,20) o< o 1(Z¢— 1)y (20-1, 2) By (2)
15: q-1(2z¢-1) < Collapse (Zzt Dt (21, Zt))
Bi-1(zi-1) < %

end for

end while

this section we introduce the extension of Algorithm 1 that allows marginal constraints
on r1.7. We start out with the situation that the hierarchy is extended breadth-first, i.e.
that the entire third layer is fitted jointly.

In the parent layer we have approximated the posterior by (weakly) consistent overlap-
ping two-slice marginals. We use these results as constraints for the third layer, i.e. rather
then requiring consistency as in (2), we restrict ourselves to consistency of overlapping

two-slice marginals only:
p(ri-14ly1r, 0) = p*(re-1,71)

for t = 2 : T. This results in a free energy identical to (14) but now with definition
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zy = {ry, $¢, X} and the constraints that all p,’s and ¢;’s sum to one replaced by

Z Pi(Ze-1,2¢) = p*(re1,71)

St—1,t,Xt—1,t

(proper normalization is automatically enforced since » | p*(r¢_1,7m:) = 1, also the weak

Tt—1,t
consistency constraints ensure that the one-slice beliefs sum to p*(r;)). In the way new
messages are computed only the first step needs to be changed

1'. Construct a two-slice belief that has the correct marginal over 7,_;; as follows:

Q1 (Zt—1)¢t(zt—1, Zt)ﬁt(zt)

St 10Xt 1.t o—1(2Zs—1)Vi(2-1, 24) Bi (2

ﬁt(zt—l, Zt) = Z

)p*(rt_1, Tt) -

Fixed points of this new message passing scheme correspond to stationary points of Fgp
with the changed normalization constraints. The proof is analogous to the proof for the
standard case presented in Section IV (see also [13]). The intuition behind the free energy
is similar: the adapted message passing scheme tries to find one and two-slice marginals
that approximate the exact beliefs as good as possible, are pairwise consistent after a
collapse, and are consistent with the soft-assignments to parent plots from the previous
layer.

The alternative message passing scheme based on 1’ infers the required marginals for
the model of the entire third layer. In Section III it was argued that inference can be
done independently for every subtree m. We will now extend Algorithm 1 so that locally
the marginals for subtree m can be computed. One possible extension is to define random
variables s§m+) that range over j with pa(j) = m and an extra state m, that encodes
being in a subplot that is not a child of m. This would imply an inefficiency, since in
the message passing scheme two-slice potentials are constructed with modes p;(m, m) that
would never be used. Algorithm 2 presents the adaptation of Algorithm 1 where only the
relevant parts of such a two-slice posterior are constructed. In Algorithm 2, z, = {s§m>, X},

w{™™ = p*(r_y = ry = m), and w{™™ = p*(r,_y # m, r, = m). The statistics (10) to (13),
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required in the M-step, can be retrieved from p; and ¢; as follows:

pi () = w"p"™ (s, = j)

pi () = w™™B" (se1 = 4, 8¢ = 5, %41, %)
pi (%) = wt(jj)ﬁt(tmm)(st = J, %)
i (7) = alsi=74,%),

with wyz) = q:(s: = J) — w™ "™ (5421 = 5 = 7).

20

Algorithm 2 Approximate inference in subtree m

oy <=1
fort=1to T do
o (z) <= 1
Bi(z) <= 1
p(yi|z)p(z, e =m) @ t=
p(yi|z)p(ze, 7y = mzg 1,71 =m) 0 t>1
W™ (2) <= p(yilz)p(zelre 1 # m, e = m)

end for

5: ¢§mm) (Zt—la Zt) <~

while —converged do

for t =1 to T do {Filtering}
10: ﬁgmm) (Zo—1,2¢) X ;1 (Zt—l)'lﬁgmm) (Zo-1,2¢)B1(21)
B (2e) o ™™ (20) ()
q:(z;) < Collapse (ngm) Y a s f)gmm)(zt_l, zi) + ngm)f)gmm) (zt)>

() < 4

end for

15:  for t =T to 2 do {Smoothing}

ﬁgmm) (Z4—1,2¢) X 041 (zt_l)wt(mm) (Z1-1,2¢) Be(2:1)

ﬁy—nfz) (Zt—l) X at—l(zt—l)

qi—1(2z4—1) < Collapse (WEmm) > f)Emm) (z4_1,2¢) + thm)f)érffl) (Zt—l))

Bi_1(zi1) < gt=1(zt-1)

ai_1(zi—1)

20: end for

end while
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V. PAPER MILL DATA

We present an example from a board production process. Board is made as a continuous
web at production speeds ranging from 600 to 800 meters per minute. Multiple paper
types are produced on the same line. The changes of type are performed without stopping
production. The process tends to be complex, differing from machine to machine and, in
general, is only partially understood. In this domain a visualization method may be useful
both as a tool for novelty detection and as an on-line monitoring tool.

In Figure 6 ten hours of production data is presented. The data consists of 13 crucial
sensor readings such as machine speed, steam pressures, flows of additives etc. measured
once a minute. The gray scales in the figure indicate different types of paper (added after
learning, i.e., this information is not used in any of the algorithms). The learned transition
probabilities p(s;41|st, @) at the third level are plotted in Figure 5. Figure 7 presents the
same data, but is produced using PhiVis [3], the static counterpart of the SLDS hierarchy.

We see that macro scale clusters such as the paper type are well separated by both
methods. The benefit of the dynamic model is more apparent in the lower levels where
drifts (stretches with larger distances between projected points) and stable situations
(closely spaced projections) in the state of the process can be observed. The bars below
the subplots in Figure 6 show that there is a clear tendency to zoom in on data that is
clustered in time (see for example the subdivision of the first parent plot at the second
level into the children subplots at the third level). To enhance interpretability of the found
clusters we experience that a simple interactive inspection tool helps greatly. In a two way
system the user can select regions in individual sensor trends and see the corresponding
projected points, the other way around the user can select projected points (usually a still
unidentified cluster) by clicking a polygon around them and see the corresponding time

points in the sensor trends.

VI. RELATED WORK

Many different visualization algorithms have been proposed in the literature based on
different assumptions about the data and hence are appropriate in different settings. The

intended use of the hierarchy of linear dynamical systems as developed in this paper is
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Fig. 5. Hinton diagram showing the learned transition probabilities p(s¢y+1 = j|s¢ = i, 0m1) between the
subplots at the third level of the hierarchy in Figure 6. In the Hinton diagram the surfaces of the squares

are proportional to the corresponding probabilities.

an exploratory analysis of complex high-dimensional time series data, complex in the
sense that multiple phenomenon occur on different levels of detail. Standard visualization
procedures that explicitly assume the data to be independent and identically distributed
could of course provide useful insights, but as is apparent from Figure 1, such studies can
benefit from an additional analysis that incorporates the time structure.

Other methods developed for the visualization of high-dimensional time series data
are extensions of the Self-Organizing Map (SOM) [14] and the Generative Topographic
Mapping (GTM) through time model [15]. In the former an animated trajectory displays
the series in a standard SOM. In the latter an extended GTM model is fitted. The GTM
is essentially a probabilistic version of the SOM, in the variant for time-series the model
is augmented with coarse Markov dynamics between latent (discrete) neurons.

Both methods fit a single non-linear 2D manifold in sensor space, the continuous latent
variables are considered stationary, restricting the dynamics to transition probabilities
between the nodes that they belong to. Furthermore, the structure of these models has to
be determined in advance and does not give the user flexibility to interactively zoom in on
the data. For simple processes, i.e. processes for which a single projection gives a clear
description, the GTM through time could form an alternative monitoring tool. Another
extension of the hierarchy of PPCAs, in an orthogonal direction, is presented in [16].
There, a hierarchy of (static) GTMs is described. This can be useful for datasets in which

the non-linearity is stronger than can be captured by multiple locally linear models.

Hybrid dynamic Bayesian networks are widely studied and known by many names and
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Fig. 6. Ten hours of production data from a paper mill projected using a hierarchy of switching linear
dynamical systems. Dotted lines connect points in a trajectory. The color labels encode different paper
types. Bars below the subplots visualize the probabilities p(s¢|y1.7) as a function of time. Transitions I;
p(bl|al), and IT; p(bl|a2), are examples of jumps between cousin plots, by Eq. 7—c these transitions are
constrained to obey p(bllal) = p(bl|B)p(B|A) = p(bl|a2). Transitions III; p(bl|b2), and IV; p(b1|b3)
are jumps between brother plots. The corresponding transition probabilities are fully modeled (Eq. 7-b),
hence in general p(b1|b2) # p(b1|b3). Note that the labels themselves are not used by the algorithm
and are added for clarity later. The number of child plots and their approximate starting locations are

determined interactively by mouse-clicks as sketched in Section II-B.

variants. The intractability of exact inference is shared among all models that involve
dynamics in a continuous latent space and discrete latent variables that either influence
the corresponding transition, the observation model or both. In the formalism of Sec-
tion IV where we define a two-slice potential that encapsulates the particular transition
and observation models all variants of such hybrid models can be treated in a similar way.

The extension of the Kalman filter model to models with switching has been indepen-

dently proposed in at least the econometrics (e.g. [6], [17]) and the tracking literature
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Fig. 7. The dataset from Figure 6 visualized using PhiVis; the static counterpart of the hierarchy of
SLDS models. In the top plot mouse-clicks were at roughly the same locations as for Figure 6. Although

most of the clusters that are visible in the SLDS projection are visible here, the dynamic structure is lost.

(e.g. [7] and references therein).

The first filtering pass of our algorithm is known as GPB2 in the tracking literature [7]
and is also presented in e.g. [6]. In [17] a similar approximate filter and corresponding
smoother is developed for a model where the discrete switches only govern the observa-
tion model. Contrary to what is suggested filtering under this restriction is not simpler,
nor exact. The smoothing pass is also approximate: the smoothed posteriors over dis-
crete variables are approximated by setting them to their filtered variants. The smoother
proposed in [18] also keeps statistics fixed when smoothing. To our knowledge the EP al-
gorithm described here and in [12] is the first algorithm to define a smoothing pass, which
is symmetric to the GPB2 filter, and which does not introduce additional approximations.

Other variants of approximate inference include MCMC methods (e.g. [19]) and parti-
cle filter algorithms (e.g. [20]). Although these methods are useful in other applications,

for the current visualization purposes they are not suited: the MCMC method is com-
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putationally too expensive and the particle filter algorithm does not infer the smoothed

statistics necessary for EM.

VII. CONCLUSION

The visualization tool that we proposed in this article allows time series to be plotted
in such a way that an approximation of the underlying structure within one time slice
and between time slices can be presented. A hierarchy makes it possible to represent the
process at different levels of detail. The applicability of our algorithm stems from the
following crucial ingredients.

« Appropriate constraints in the SLDS corresponding to the third and subsequent levels.
These constraints do not only enforce the “conservation of probability” going from a parent
to its children, but also facilitate efficient inference and learning.

« An approximate inference algorithm for the E-step that scales linearly with the number of
switches and the length of the sequence. The approximation strategy presented here, which
is a specific case of expectation propagation, is particularly suited for the visualization of
high-dimensional dynamic data with markedly different regimes, as encountered in our
paper mill application.

Combination of the two makes the overall computational complexity essentially of the
same order as its static counterpart, a hierarchical mixture of PPCAs (see Appendix B).

The visualization tool as presented here has great potential for exploration and on-line
monitoring of high-dimensional dynamic data. Several natural and interesting extensions
are possible. The current hierarchy represents a data set using multiple linear projections.
Alternatively, one can, with a slight change in the model, display the data onto a single non-
linear manifold. For example, if the system is not reset after a switch the orientation of the
different locally linear manifolds are coupled. This might form an interesting alternative
for the extra penalty term required in [21] to coordinate the local axes of factor analysis
models. In principle, it should be possible to give a full (approximate) Bayesian treatment
of all parameters involved, i.e., including the model parameters @. Theoretically, such
a model fits well in the EP-framework. However, the accuracy of such a method and
a comparison with the simpler variational (mean-field) Bayes [22] or an MCMC based

approach [23] has to be determined in practice. An extension to a model which models
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dependencies between s;,; and x; requires an adaptation of the approximate inference
algorithm from Section IV due to the extra non-linearities [24], but may allow for better

predictive capabilities.
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APPENDIX
I. PRACTICAL ISSUES

In this appendix we discuss several practical aspects that deserve special attention when
implementing an LDS for visualization.

In a straightforward description of the LDS extra parameters are reserved for fitting
the prior p(x;) using maximum likelihood. Especially in the limit A = 0, but also for
nonzero A, this can cause serious over-fitting, yielding rather unappealing projections of
the first data point(s). There are several ways to resolve this (see e.g. [25]). One option
is to take a fixed and broad (Gaussian) prior. This however treats the first data point
different from the rest and does not reduce to PPCA with A = 0. Another, and perhaps
more elegant solution is to take the stationary distribution of the latent-variable dynamics
as a prior. This changes the M-step, since the transition matrix A now also enters the log-
likelihood through the prior p(x;). Exact M-step updates can be obtained for constrained
transitions A = al, relatively straightforward approximate ones for general A. Similarly,
we can choose the prior 7 for s; in the SLDS to be the leading eigenvector of the transition
matrix I, which again encodes the stationary distribution.

A second point of consideration is the fact that the model cannot be identified com-
pletely, i.e., the scale and orientation of the latent axes cannot be uniquely determined
from the data. After convergence of the EM-algorithm we can turn the stationary distri-

bution into a standard normal distribution and transform C' to have orthogonal columns.
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The projection then has orthogonal axes with identical scales. Note that there are many
possible orthogonal projections left, which explains the remaining rotational degree of

freedom in Figure 1, but these are equivalent in terms of interpretability.

II. COMPLEXITY

A standard implementation of the EM-algorithm for the LDS has complexity O(Tp?)
where T is the number of observations and p is the dimension of the observations. Here
we treat the dimension of the latent space, which is two for visualization purposes, as a
constant. The d® complexity is due to the inversion and determinant calculation of p X p
matrices that all have the form CVCT + R, with C a p x ¢ matrix, V a positive definite

g X ¢ matrix and R a positive constant times the identity matrix. Using
(CVCT+R)'=R'-A'C(V 4+ CTR'O)CTR™!

and

ICVCT + R| = |R||I, + C"R'CV],

the inversion and determinant calculation can be done in O(p) time. This makes it possible
to compute both the posteriors and the likelihood of the model in O(T’p) time which is
identical to the PPCA model. Similarly, treating ¢ as a constant the memory requirements
are O(T') which is also identical to PPCA.

Approximate inference in a general SLDS using the algorithm in Section IV has com-
plexity M? times that of the regular LDS algorithm, with M the number of different values
(regimes) s; can take. The reset after a regime switch however implies that the number of
operations dealing with the high dimensional observations d increases only by 2M (for all
i, the approximations py(x¢—1,X¢, S—1 = 4,8 = j) with j # ¢ are identical). To make use
of this the construction of p, in Algorithms 1 and 2 should be carefully implemented. The
Markov process on the discrete latent states imply a summation over an M? transition
matrix, but by our constraints in Section III, M will stay within reasonable ranges. The
final complexity of the SLDS and the model of the third layer is thus O(MTp + M?T),
which we can expect to be reasonable for all situations in which the hierarchical PPCA

model can be applied.
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III. M-STEP UPDATES

A

In the M-step, £(8) is maximized w.r.t. all parameters in . The updates can be found
by adding Lagrange multipliers for the normalization constraints and setting derivates to
0. We give here the update equations for subtree m in the model described in Section II1-B.
The LDS and SLDS updates follow as special cases.

The sufficient statistics (10) to (13) are calculated in the E-step. We use (-). to denote
weighted expectations, e.g.

(f (-1, %2)) py (mmy

St_1 =8 = ], Y1.T, 0(()7173)) .

= p*(st—l = S = j|Y1:T, 9(()713)) /dXt—l,tf(Xt—1,Xt)p*(xt—l,t

In this notation (1)p;,(mm) simply gives the weighting factor. In the statistics above, and
27

hence in the update equations below, we recognize forms similar to a regular LDS but now

with a weighting term that would not be present in the non-switching case. The updates

for 7, and TI;_, ), are weighted versions of the standard HMM updates.

T T -1
A;_lew _ (Z <thzl1>pz (n]z;n)> (Z <Xt,1x£1>pz (n;;n)>
t=2 t=2
g (D Oy — A S (o)
o

i (L (mmy

T
im0 D (e (mmy
t=2
T
Demr (XX ) ()

snew

J T
2= My (my
T

T % D (1) ()
t=1

We compute the new output matrix C; and the new mean p; jointly by adding p; as an

extra column to C; and adding an entry to the continuous state that is always 1. We
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define
P, = (xix7) (%)
| )
my,;, = (i)
J _ )

C«Jpew = [er_lew u;}ew} ’

with the weighted expectations (-) over p} (}'), to arrive at

T T
C;leW = Z thZ:g Z Pt,j
t=1 t=1
~ T
e (EEtn g -u | (@) (SLvant) )
rs new ?
! P s (D ()

J

-1

where p is the dimensionality of the observations y;.

In the above the updates are based on the entire sequence y;.,. We can neglect sub-
sequences for which the probability of being in subtree m is sufficiently low. This would
result in similar updates as above, but with sums over only part of 1: 7.

Missing values can be dealt with by treating missing (components of) y,’s as latent
variables and integrating them out. In Algorithms 1 and 2 only the potentials change. In
the M-step only the updates for rjz- and C; change. The noise covariance TJQ- is effectively

updated on less (weighted) data points, the projection matrix C; is updated one row at a

time.
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