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The Boltzmann Machine




The Boltzmann Machine

The energy of the Boltzmann machine for a certain state is

1
—F (g) = 0;s; + 5 W;5858;
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The probability to find the BM in state s:

1

p(F) = exp(—E (7))

The normalizing constant is the partition function

Z=  exp(—E(7))

all s




Derived Quantities

Z = exp(—E(5))
all s

Means and correlations
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Computing the Partition Function

exp(Energy)
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Z= exp(—E ()
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A Simple Approximation

4

Approximate exp (z) by 1 + x

E(5)=2"

all §

which is a quite poor approximation.

—_— exp‘(x)
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Variational Approaches

For all p we know

exp (z) > e +e(z —p)=e"(1+z—p)

e (1 B () — p)

all §

=2%e! (1 - p)

The best approximation is the maximum of B (u).

0
—B = — H — s
o (n) =—pe! =0 = p=20

and again we find




Variational Approaches

exp (z) > e (1+z — p)

Vus) Z= exp(—E(3)> (1 -E(5)— p(

all 8§

and we choose
p(s)=p+  his;

which can be optimised with respect to © and h;.




Other Bounds
The Kullback-Leibler divergence is a bound:

q(%5)

K (q,p) = Q(g)logp(g)

all s
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But we have also

logx < E—1—|—log,u
1

1
tanhx < —— (z — ,u)2 +(1- tanh? ) (z — p) + tanh p
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Improving Bounds
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Improving Bounds
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Improving Bounds

Given fy (x) > by () we can derive

o | fi=[foland |by = [ bg|with for some v

o | fo=[fi|and |by = [ by | with for that v

Then we know

o Vo fo(z) > b2 (2)
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Example: Exponential function

0= bO(CIZ)
e’ = by (x)
e’ (1+z—v)=by(x)
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Example: Exponential function




Summary

You have a function that is intractable (e.g.
2 an 5Xp (—E(5)))

You can derive a (large) class of bounding functions

(f (x) = b(z, 1))

These functions are parametrized by u, the variational

parameters
The larger this class is, the better your estimate

Optimize the class of bounding function with respect to u to
find the tightest bound




Take Home Message

1. I have seen a way to do approximate computations for a

Boltzmann machine. But p (I will use a BM) = 0.

2. I have an intuition of what can be done with variational
methods and the Boltzmann machine was just one of the

applications.




