Variational Methods and Bounds

- Introduction to Boltzmann machines
- Simple approximations
- Introduction to variational methods
- The search for bounds
- Summary

The Boltzmann Machine

$$p(s_i = 1) = \sigma\left(\theta_i + \sum_j w_{ij}s_j\right)$$

The Boltzmann Machine

The energy of the Boltzmann machine for a certain state is

$$-E(\vec{s}) = \sum_{i} \theta_{i} s_{i} + \frac{1}{2} \sum_{ij} w_{ij} s_{i} s_{j}$$

The probability to find the BM in state \vec{s} :

$$p(\vec{s}) = \frac{1}{Z} \exp(-E(\vec{s}))$$

The normalizing constant is the partition function

$$Z = \sum_{\text{all } \vec{s}} \exp\left(-E\left(\vec{s}\right)\right)$$

Derived Quantities

$$Z = \sum_{\text{all } \vec{s}} \exp\left(-E\left(\vec{s}\right)\right)$$

Means and correlations

$$\langle s_i \rangle = \frac{\partial}{\partial \theta_i} \log Z = \frac{1}{Z} \frac{\partial Z}{\partial \theta_i} = \frac{1}{Z} \sum_{\text{all } \vec{s}} \frac{\partial}{\partial \theta_i} \exp\left(-E\left(\vec{s}\right)\right)$$

$$= \frac{1}{Z} \sum_{\text{all } \vec{s}} \exp\left(-E\left(\vec{s}\right)\right) s_i = \sum_{\text{all } \vec{s}} p\left(\vec{s}\right) s_i$$

$$\langle s_i s_j \rangle = \frac{\partial}{\partial w_{ij}} \log Z$$

Computing the Partition Function

A Simple Approximation

Approximate $\exp(x)$ by 1 + xThus

$$Z = \sum_{\text{all } \vec{s}} \exp\left(-E\left(\vec{s}\,\right)\right) \approx \sum_{\text{all } \vec{s}} (1 - E\left(\vec{s}\,\right))$$

$$=2^{N}-\sum_{\text{all }\vec{s}}E\left(\vec{s}\right)=2^{N}$$

which is a quite poor approximation.

Variational Approaches

For all μ we know

$$\exp(x) \ge e^{\mu} + e^{\mu}(x - \mu) = e^{\mu}(1 + x - \mu)$$

Thus

$$\forall_{\mu} Z = \sum_{\text{all } \vec{s}} \exp(-E(\vec{s})) \ge \sum_{\text{all } \vec{s}} e^{\mu} (1 - E(\vec{s}) - \mu)$$

$$= 2^{N} e^{\mu} (1 - \mu) = B(\mu)$$

The best approximation is the maximum of $B(\mu)$.

$$\frac{\partial}{\partial \mu} B(\mu) = -\mu e^{\mu} = 0 \implies \mu = 0$$

and again we find

$$Z \ge 2^N$$

Variational Approaches

$$\exp(x) \ge e^{\mu} (1 + x - \mu)$$

Thus

$$\forall_{\mu(\vec{s})} \ Z = \sum_{\text{all } \vec{s}} \exp\left(-E\left(\vec{s}\right)\right) \ge \sum_{\text{all } \vec{s}} e^{\mu(\vec{s})} \left(1 - E\left(\vec{s}\right) - \mu\left(\vec{s}\right)\right)$$

and we choose

$$\mu\left(\vec{s}\right) = \mu + \sum_{i} h_{i} s_{i}$$

which can be optimised with respect to μ and h_i .

Other Bounds

The Kullback-Leibler divergence is a bound:

$$K\left(q,p
ight) = \sum_{\mathrm{all}\ \vec{s}} q\left(\vec{s}
ight) \log \frac{q\left(\vec{s}
ight)}{p\left(\vec{s}
ight)} \geq 0$$

But we have also

$$\log x \le \frac{x}{\mu} - 1 + \log \mu$$

and

$$\tanh x \le \frac{1}{2\sqrt{2}} (x - \mu)^2 + \left(1 - \tanh^2 \mu\right) (x - \mu) + \tanh \mu$$

Improving Bounds

$$f_1(x) = \int_{x'=\nu}^{x'=x} f_0(x') dx' \overset{\geq}{=} (x \geq \nu) \int_{x'=\nu}^{x'=x} b_0(x') dx' = b_1(x)$$

Improving Bounds

$$f_{2}(x) = \int_{x'=\nu}^{x'=x} f_{1}(x') dx' \ge \int_{x'=\nu}^{x'=x} b_{1}(x') dx' = b_{2}(x)$$

Improving Bounds

Given $f_0(x) \ge b_0(x)$ we can derive

•
$$f_1 = \int f_0$$
 and $b_1 = \int b_0$ with $f_1(\nu) = b_1(\nu)$ for some ν

•
$$f_2 = \int f_1$$
 and $b_2 = \int b_1$ with $f_2(\nu) = b_2(\nu)$ for that ν

Then we know

$$\bullet \ \forall_{x,\nu} \quad f_2\left(x\right) \ge b_2\left(x\right)$$

Example: Exponential function

$$f_0(x) = e^x \ge 0 = b_0(x)$$

 $f_1(x) = e^x \le e^{\nu} = b_1(x)$
 $\forall_{x,\nu} \quad f_2(x) = e^x \ge e^{\nu} (1 + x - \nu) = b_2(x)$

$$f_1(x) \leqslant b_1(x)$$

$$f_2\left(x\right) \ge b_2\left(x\right)$$

Example: Exponential function

$$\forall_{x,\mu,\lambda} \quad e^x \ge e^{\mu} \left\{ 1 + x - \mu + e^{\lambda} \left(\frac{1-\lambda}{2} (x-\mu)^2 + \frac{1}{6} (x-\mu)^3 \right) \right\}$$

$$\mu = 0$$

$$\lambda = -1$$

$$\mu = 0$$

$$\lambda = 0$$

$$\mu = 0$$

$$\lambda = +1$$

Summary

- You have a function that is intractable (e.g. $\sum_{\text{all } \vec{s}} \exp(-E(\vec{s}))$)
- You can derive a (large) class of bounding functions $(f(x) \ge b(x, \mu))$
- These functions are parametrized by μ , the *variational* parameters
- The larger this class is, the better your estimate
- Optimize the class of bounding function with respect to μ to find the tightest bound

Take Home Message

- 1. I have seen a way to do approximate computations for a Boltzmann machine. But p(I will use a BM) = 0.
- 2. I have an intuition of what can be done with variational methods and the Boltzmann machine was just one of the applications.