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1 Introduction
How does the brain compute? Particularly in the last hundred years have we gath-
ered an enormous amount of experimental findings that shed some light on this
question. The picture that has emerged is that the neuron is the central computing
element of the brain which performs a non-linear input to output mapping between
its synaptic inputs and its spiky output. The neurons are connected by synaptic
junctions, thus forming a neural network.

A central question is how such a neural network implements brain functions
such as vision, audition and motor control. These questions are to a certain extend
premature, because our knowledge of the functioning of the neuron and the synap-
tic process itself is only partial and much remains to be discovered. Nevertheless,
it is interesting to see what emergent behavior arises in a network of very simple
neurons.

In section 2 we begin with the study of the spiking behavior of biological
neurons. As we will see, the neural firing is not a deterministic function of the
input that it receives, but is in fact best described as a stochastic process. We
discuss the Poisson process, where a spike train is viewed as a point process in
time; we study the spiking behavior of a random walk model and how its inter-
spike interval distribution can be used to model a large variety of real neuron data;
and we study the integrate and fire neuron.

It will become clear that these model neurons, although they give at best an
approximate description of the behavior of real neurons, are still too complex to
use as basic cells in a neural network. In section 3 we set the complexity of
real neurons aside and introduce the simplest neuron model possible, which is
the stochastic binary neuron. The pioneering work in this direction was done by
McCulloch and Pitts [1] in the ’40s. Taking the thresholding property of neurons
to the extreme, they proposed that neurons perform logical operations on their
inputs, such as AND and OR. One can show that a network of such neurons, when
properly wired, can perform any logical function and is equivalent to a Turing
machine.

When considering neural networks, an important distinction is between feed-
forward networks and recurrent networks. In feed-forward networks, the neu-
rons can be labeled such that each neuron only receives input from neurons with
lower label. Thus, one can identify input neurons, which receive no input from
other neurons and whose activity depends only on the sensory stimulus, and out-
put neurons whose output does not affect other neurons. When in addition the
neurons themselves are assumed to have no internal dynamics, the dynamics of
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feed-forward networks is trivial in the sense that the output is a time-independent
function of the input: y(t) = F(x(t)), where F is a concatenation of the individual
neuron transfer functions and x and y are input and output activity, respectively.
Examples of such networks are the perceptron [2] and the multi-layered percep-
tron [3, 4] and are the subject of the chapters by John Hertz, taken from his book
[5].

In recurrent networksi, even when individual neurons have no internal dynam-
ics, the network as a whole does, and the input-output mapping depends explicitly
on time: y(t) = F(x(t), t), Examples of such networks are attractor neural networks
[6], topological maps [7], sequence generators [8] and Boltzmann Machines [9].
We will study important properties of such networks such as transients, equilib-
rium, ergodicity and periodicity in section 3.2.

An exact description of transient and stationary behavior for stochastic neu-
ral networks is not possible in general. In some special cases, however, one can
compute the generic behavior of stochastic networks using mean field theory. One
averages over many random instances of the network (quenched average) and de-
scribes the properties of the network with a small number of order parameters.
The classical example is the attractor neural network, as proposed by Hopfield
[6]. The mean field analysis was presented in a series of papers by Amit, Gutfre-
und and Sompolinsky [10, 11]. In section 4, we study the simplest form of mean
field theory, without averaging over the quenched disorder and show how this al-
lows us to approximately compute statistics such as means and correlations in the
network. In section 4.5, we show how we can use these approximations to learn
the connections in a stochastic neural network form data.

In section 5.1, we introduce the concept of Hebbian learning, as first postulated
in the psychological literature to explain the phenomenon of classical condition-
ing. We also show some physiological evidence of Hebbian learning in the form
of long-term potentiation (LTP) and long-term depression (LTD). In section 5.2
take up the question of the functional role of recurrent computation in the brain.
We show how both short-term memory and long-term memory are likely to re-
quire recurrent loops and that Hebbian learning may be important to establish the
correct connections.

In section 5.3 we study the implications of Hebbian learning in a recurrent
network of binary neurons. These networks are also called Hopfield networks.
Patterns, which are global activity states of the network, can be stored in these
networks as attractors of the stochastic dynamics. In these networks, memories
are content addressable, in the sense that when the network is initialized in a
state that resembles one of the stored patterns, the network will converge to that
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memory. Due to the symmetric connectivity of the Hebb rule, the asymptotic
behavior of the network can be computed in closed form. As a result, the capacity
of the network to store memories can be analyzed as a function of the number of
patterns that are stored and the noise in the neuron dynamics. When the noise
is too high, all attractors become unstable and the firing of the neurons becomes
more or less uncorrelated (paramagnetic phase). When the number of patterns is
too large, the network behaves as a spin glass whose minima are uncorrelated with
the stored patterns.
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2 Neural information processing is noisy
When a neuron is presented repeatedly with the same stimulus, the response of the
neuron is not identical, as can be seen in fig. 1. An important source of the noise
is the unreliable response of synapses, as can be seen in fig. 2. This unreliability
can in turn be related to the stochastic nature of the channels in the membrane, as
is illustrated in fig. 3. Another cause of the unreliable neural firing is that the input
to the neuron is not only from the stimulus, but also from active neurons that are
connected to it. Since the response of the neuron is noisy, it differs from trial to
trial. By averaging the response over some time window one computes the instan-
taneous firing rate (fig. 1 lower two panels) of the neuron which is reproducible
from trial to trial.

Instead of measuring the instantaneous firing rate of the neuron, we can also
measure the time between subsequent spikes, called the inter-spike intervals (ISIs).
In fig. 4, we see some examples. In some cases, subsequent ISIs are correlated, in
some cases they are not.

2.1 Poisson Processes
The Poisson process is the simplest stochastic point process that you can think of.
The probability of firing in any short time interval [t, t + δt] is constant and equal
to λδt.

Define px(t) =Prob{cell fires exactly x times in [0, t]}. Then,

p0(t + δt) = p0(t)(1 − λδt)

Since p0 is a smooth function of t, we can use the Taylor series expansion and
write:

p0(t + δt) = p0(t) + δt
∂p0(t)
∂t

Combining these last two equations, we obtain ∂p0(t)
∂t = −λp0(t). This can be easily

solved to yield
p0(t) = exp(−λt)

since p0(0) = 1.
We can now repeat this reasoning to compute px(t).

px(t + δt) = px(t)(1 − λδt) + px−1(t)λδt
∂px(t)
∂t

= −λpx(t) + λpx−1(t)
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Figure 1: Monkey cortical area V4. response to 1500 ms flashed grating. Dots
show spikes of the neuron. Different lines are different trials, which are each
slightly different. Summing the aligned trials produces the post-stimulus time
histogram (PSTH). The two lower plots illustrate an average firing rate obtained
from the raster diagrams using Gaussian smoothing withσ set to 20 and 200 msec,
respectively.
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Figure 2: Layer 5 pyramidal neuron from somatosensory cortex of rat. c) shows
in repeated trials the response of a single synapse to a regular train of presynaptic
spikes. As can be seen, synaptic response is very unreliable. d) shows the same
experiment after a period of vigorous paired stimulation of the pre- and post-
synaptic cell (b). One sees that as a result of the paired stimulation the reliability
of the first synaptic response is greatly enhanced. e) This effect lasts for hours.

Figure 3: Ionic current across patch of excitable membrane (rat).
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Figure 4: A) Spontaneous activity in the auditory nerve is quite variable between
fibers, but all interval histograms can be described by an exponential distribution
(left), and show independence of subsequent intervals (right). B) In the cochlear
nucleus, a wide range of interval distributions are found ranging from exponential
to nearly Gaussian.
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In words, the probability to obtain x spikes in [0, t +δt], is either to obtain x spikes
in [0, t] and no spikes in [t, t +δt] or x−1 spikes in [0, t] and one spike in [t, t +δt].
By direct substitution, one can easily verify that the solution is given by

px(t) =
(λt)x

x!
exp(−λt)

The expected number of spikes at time t is

〈x〉t =

∞∑
x=0

xpx(t) = λt

The fluctuation in the number of spikes is given by

σ2
t =

〈
x2

〉
t
− 〈x〉2t = λt

2.1.1 Interval distribution

The length of the inter-spike intervals (ISIs) can be computed for the Poisson
process. The probability to observe an ISI of length t is denoted by I(t) and is
related to p0(t) in the following way. I(t)δt =Prob{no firing in [0, t]}× Prob{firing
in [t, t + δt]}= λp0(t)δt. Thus,

I(t) = λ exp(−λt)

The mean ISI is given by

〈t〉 =

∫ ∞

0
tI(t)dt = λ−1

The variance in I is given by

σ2
t =

〈
t2
〉
− 〈t〉2 = λ−2

The ’coefficient of variation’ CV is defined as

CV =
σt

〈t〉
.

CV = 1 for Poisson processes.
The CV is illustrated in fig. 5. Cell spiking activity was segmented according

to mean firing rate (top right A and B) into 10 values. For each value, the ISI
histogram is computed (top right C,D and E) and its corresponding coefficient of
variation (bottom). We see that the measured CV is typically smaller than 1, and
can therefore not be explained by the Poisson process. Simple extensions of the
basic Poisson process can however explain these data, as we will show now.
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Figure 5: (Top left) Firing statistics of neurons in areas V1 (monkey; fixation
task; cells were stimulated by flashed bars, Knierim and Van Essen 1992) and MT
(monkey; discrimination task of movements in random dot patterns). A,B) Sample
spike train C,D) PSTH; E,F) ISIs. (Top right) A,B) Instantaneous firing rates of
V1 and MT cell. PSTHs were segmented according to instantaneous firing rate in
10 sets (0-9). C-E) ISI histograms are computed for different rates (segments 2,
5 and 8 shown). (Bottom) CV as a function of firing rate. Values between 20-30
msec are underestimated and are probability consistent with CV=1. For low rates,
the data are in disagreement with the Poisson ansatz.
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2.1.2 Integration reduces CV

Consider that the neuron receives input, which are independent Poisson spike
trains with identical rates λ, and that it requires N of such input spikes before
the neuron fires. The ISI distribution is now given by:

IN(t)δt =Prob{N − 1 firings in [0, t]}× Prob{firing in [t, t + δt]}= λpN−1(t)δt.
Thus,

IN(t) =
λNtN−1

(N − 1)!
exp(−λt)

which is known as the Gamma distribution.
The mean and variance are given by

〈t〉N =
N
λ

σ2
t =

N
λ2 (1)

The ’coefficient of variation’ CV is therefore

CV =
1
√

N

Intuitively, this result can be easily understood. The time t it takes before the
neuron fires is the sum of N independent contributions. From the law of large
numbers, we know that the variance of such a sum scales as 1/

√
N, which is what

we see in CV.

2.1.3 Refractoriness

Cells must recover after firing as a result of Na inactivation which slowly restores
the membrane potential to its resting value. If the refractory time is t0, then eq. 1
is changed to

〈t〉N → 〈t〉N + t0

and σ2
t is unaltered.

The effect of integration (N > 1) and refractoriness are illustrated in fig. 6. We
see that neural integration (large N) is in disagreement with the observed large CV
in fig. 5. If the neural code uses the (temporal average) firing rate as the carrier of
information, then the neuron must integrate incoming activity over time to extract
this rate from the incoming spike train. We see that integration implies small CV,
whereas the data show rather large CV. Therefore we may conclude that the idea
that mean firing rate is the carrier of information is contradicted by the above data.
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Figure 6: CV as predicted by the above model for different values of N(= Nth)
and t0

2.2 ISI distributions
We will now have a closer look at the ISI distributions as a whole, not just the
means and variances.

For a Poisson process the ISI distribution is given by

I(t) = λ exp(−λt)

Therefore, if successive ISIs are independent, the joint probability for interval t1

followed immediately by interval t2 is

I(t1, t2) = λ2 exp(−λ(t1 + t2))

Thus, lines of constant probability are parallel to t1 + t2 = 0.
Consider now the probability density Ik(t) for the interval between a spike and

the kth that follows it. This is the Gamma distribution as given before:

Ik(t) =
λktk−1

(k − 1)!
exp(−λt)

For large k, Ik(t) tends towards a Gaussian distribution. In fig. 7, we see that cell
259-2 nicely obeys these two above properties.
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Figure 7: (Left) Observed joint ISI distribution of two subsequent intervals I(t1, t2)
for three cells from cat auditory system. (Right) Im(t) for same three cells and
various m.
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Cell R-4-10 has a more or less Gaussian ISI. If subsequent ISIs are indepen-
dent and I(t) is Gaussian, we obtain

I(t1, t2) ∝ exp(−
1

2σ2

(
(t1 − t̄)2 + (t1 − t̄)2

)
)

with t̄ the mean ISI. This implies that contours of constant probability are cir-
cles. The convolution of a Gaussian is again a Gaussian. Therefore, Ik(t) remains
Gaussian. Cell R-4-10 in fig. 7 is an example (note the change of scale on the x
axis).

For cell 240-1 we observe that the shape of Ik(t) is more or less independent
of k and only require a change of time scale by a factor 2. If we assume that
succesive intervals are independent, the scaled interval histogram obeys:

I2(t) = I(t) ∗ I(t) =

∫ t

0
dt′I(t − t′)I(t′) =

1
2

I(t/2) (2)

So, we should ask ourselves the question: Which distribution has the property
that, when convoluted with itself, is of the same functional form? Only three
distributions that satisfy this property are know in closed analytical form: the
Gaussian distribution, the Cauchy distribution and the so-called stable distribution
of order 1/2. The Gaussian distribution we already considered and does not match
well the asymmetry and long tail of cell 240-1. The Cauchy distribution (∝ (x2 +

1)−1) has very long tails but is symmetric and therefore not easily restricted to
x ≥ 0.

The distribution of order 1/2 is defined only on the interval x ≥ 0 and has
one of the longest tails to be found in probability theory. It gives the probability
density of first passage times in a one-dimensional random walk. This is the
distribution that can be interpreted to result from a very simple neuron model and
that we will now consider more in detail.

2.3 First passage times
The effect of a presynaptic spike on the post-synaptic neuron is a local change
in the membrane potential. This change can be either positive or negative and is
called the excitatory or inhibitory postsynaptic potential (PSP). The PSP is of the
order of 0.05-2 mV [12] and is a stochastic event [13]: it either happens or it does
not. The probability of the PSP is experimentally observed anywhere between
0.1 and 0.9 (see [14] and references there) and depends also on recent pre- and
post-synaptic cell activity [15, 16].
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Figure 8: Basic response of a neuron (membrane potential) as a result of external
current stimulation. The neuron displays two regimes. For small input currents,
the response in approximately linear. For currents that exceed a threshold value,
the neuron displays an autonomous response in the form of a stereotype action
potential.

How these local changes in the membrane potential at synaptic junctions con-
tribute to the spike generation process can be computed by compartmental mod-
eling of the geometry of the cell. The dynamics is a complex spatio-temporal
process involving many thousand synaptic inputs which are distributed over the
dendrites and soma. A main complicating factor is that such simulations require
the setting of many parameter values, many of which are not experimentally ac-
cessible. The general picture that emerges is, however, that the local PSP at the
synapse propagates to the cell body with a delay of 1-2 msec and shows a tempo-
ral dispersion of about 10 msec. The dendrite acts as a low pass filter and strongly
attenuates the frequency components of the PSP above 50 Hz [17].

The first passage time (FPT) distribution can be formulated as a random walk
problem, which we here describe in terms of a simplified neuron model. This
model mimics the linear and threshold behavior of real neurons as shown in fig. 8.

1. Let the electrical state of the neuron be specified by a single number, the
membrane potential v.

2. Choose a particular point (v = 0) as the resting potential
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3. Assume that each incoming EPSP increments v by one and each IPSP de-
creases v by one. These presynaptic events are random and independent:

vt+1 = vt + ξ (3)

where, ξ = ±1 is a random variable with mean value µ and variance σ2.

4. Choose another point v = vth as the threshold. Whenever v reaches the
threshold, a spike is emitted and v is reset to 0.

2.3.1 Diffusion

First consider that there is no threshold, and we wish to compute the probability
p(t, v|t0, v0), which is the probability that at time t the membrane potential is at v,
given that at time t0 the value was v0.

Since vt is a sum of t − t0 independent contributions, p(t, v|t0, v0) is Gaussian.
The Gaussian is fully determined by its mean and variance. We easily compute
the evolution of the mean by taking the expectation value of eq. 3 on both sides:
〈vt+1〉 = 〈vt〉 + µ, and thus

〈v〉t = v0 + µ(t − t0)

Squaring eq. 3 and taking the expectation value on both sides, we compute the
time dependence of the variance: σ2

t+1 =
〈
v2

t+1

〉
− 〈vt+1〉

2 = σ2
t + σ2:

σ2
t = σ2(t − t0)

Thus the diffusion process is described by a Gaussian distribution with time de-
pendent mean and variance:

p(t, v|t0, v0) =
1

√
2π(t − t0)σ

exp
(
−

(v − 〈v〉t)2

2σ2(t − t0)

)
2.3.2 First passage time distribution

We can now compute ρ(t): the probability distribution of the ISIs for the first
passage time problem. We make use of the following identity:

p(t, vth|0, 0) =

∫ t

0
dt′p(t, vth|t′, vth)ρ(t′) (4)

ρ(t′) is the probability to arrive after time t′ for the first time to vth, starting at
time t = 0 at v = 0. Eq. 4 states that ρ(t) is related to the diffusion distribution
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Figure 9: First passage time process. In this example, v(t = 0) = 32 and at each
time, v is increased or decreased by one with equal probability. The first time
v(t) = 0, a spike is emited and v is reset to 32. ρ(t) gives the distribution of the
first passage times.

p(t, vth|0, 0) by first moving in time t′ from 0 to vth (described by ρ(t′)) and then
at time t visiting the threshold again (described by p(t, vth|t′, vth)). The situation is
depicted graphically in fig. 9.

The solution can be obtained using the Laplace transformation and is given by

ρ(t) =
vth

√
2πσt3/2

exp
(
−

(vth − µt)2

2σ2t

)
(5)

We will now show how to obtain this solution.

2.3.3 Laplace transformation

We solve the integral equation using the Laplace transform. We briefly review its
basic properties.

If f (t) is a function of t, then the Laplace transform of f , denoted by f̂ is given
by

f̂ (s) =

∫ ∞

0
f (t) exp(−st)dt

The Laplace transform is only defined for Re s > 0. The inverse transformation is
given by

f (t) =
1

2πi

∫ c+i∞

c−i∞
ds f̂ (s) exp(st)
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with c some positive real number.
The Laplace transformation can be useful to solve integral equations of certain

type. For instance, if

f1(t) =

∫ t

0
dt′ f2(t − t′) f3(t′),

then
f̂1(s) = f̂2(s) f̂3(s)

Some useful Laplace relations are:

f (t) f̂ (s)
1
√
πt

1
√

s
1
√
πt

exp(−k2/4t) 1
√

s exp(−k
√

s)
k

2
√
πt3

exp(−k2/4t) exp(−k
√

s)

We use the Laplace transformation to solve the integral equation eq. 4. We
identify

f1(t) = p(t, vth|0, 0) =
1

√
2πtσ

exp
(
−

(vth − µt)2

2σ2t

)
f2(t − t′) = p(t, vth|t′, vth)

=
1

√
2π(t − t′)σ

exp
(
−
µ2

2σ2 (t − t′)
)

f3(t′) = ρ(t′)

We show the calculation in detail for the slightly simpler case µ = 0. Then

f̂1(s) =
1
√

2sσ
exp

(
−
√

2s
vth

σ

)
f̂2(s) =

1
√

2sσ

Thus,

ρ̂(s) =
f̂1(s)

f̂2(s)
= exp

(
−
√

2s
vth

σ

)
ρ(t) =

vth
√

2πσt3/2
exp

(
−

v2
th

2σ2t

)
which is in agreement with eq. 5.
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2.3.4 Scale invariance

It is easy to see that without drift (µ = 0), ρ(t) is invariant under convolution with
itself. The sum of two subsequent intervals is distribution as

ρ2(t) =

∫ t

0
dt′ρ(t − t′)ρ(t′)

We easily solve this using the Laplace transform:

ρ̂2(s) = (ρ̂(s))2 = exp
(
−2
√

2s
vth

σ

)
from which we get

ρ2(t) =
2vth

√
2πσt3/2

exp
(
−

2v2
th

σ2t

)
=

1
4
ρ(t/4)

So ρ2(t) has the same shape as ρ(t). However, note that the scaling factor 4 is
different from the scaling factor 2 that we observe experimentally (see eq. 2). In
addition, for large k we observe that the observed distribution eventually becomes
Gaussian, whereas ρk (the distribution of the sum of k subsequent ISIs) remains
scale invariant.

2.3.5 Approximate scale invariance.

When µ , 0, the first passage time distribution is unfortunately no longer invariant
under convolution with itself. However, it is easy to show that for a certain range
of parameters there is approximate shape invariance with 2× expansion of the time
scale. This is illustrated in fig. 10.

The first passage time distribution can be fitted to the data and has two free
parameters:

ρ(t) ∝
1

t3/2 exp
(
−

a
t
− bt

)
(6)

The best fits are shown for three different neurons in fig. 11. Despite the great dis-
parity of experimental conditions and anatomical location, the interval histograms
of the data from both units 240-1 and 6-2 are well fitted by similar choice of pa-
rameter values. From eq. 5, we infer that a =

v2
th

2σ2 and b =
µ2

2σ2 . If we set the
step-size of the random walker equal to one (σ2 = 1), then the fit of unit 240-1
shows that the threshold is about 7 steps above the resting membrane potential
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Figure 10: Simulated ISIs from first passage time distribution with drift µ = 1/16
and threshold vth = 32 shows approximate invariance under convolution with 2×
expansion of the time scale.
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Figure 11: Unit 240-1. Cochlear nucleus anesthetized cat. Unit 6-2. Auditory
cortex unanesthetized cat. The ’Gaussian’ ISI distribution of Unit R-4-10 can also
be rather well fitted with this model, but requires rather different values for a and
b.
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and the drift µ = 0.18 is small. The Gaussian-like data of unit R-4-10 can alos be
fitted by eq. 6, but with very different values of a and b. This neuron has a higher
threshold than unit 240-1 (14 vs. 7) and a significant drift (µ = 0.87). These esti-
mates imply that the mean ISI value should be approximately 14/0.87 ≈ 16 msec,
which is in agreement with the peak value of the ISI distribution in fig. 11.

2.4 Integrate and Fire Neuron
The integrate and fire model improves the random walk model, by introducing a
’leak’ term in the dynamics that drives the membrane potential back to its resting
value. As can be seen from fig. 8, for small currents the response is well described
by a linear differential equation of the form

C
dV
dt

= −
V
R

+ I(t)

When V > Vth a spike is generated and V → Vrest = 0.
For constant current (I(t) = I0, t > 0,V(0) = 0) the differential equation in the

absence of a threshold can be easily solved:

V(t) = I0R
(
1 − e−t/τ

)
, τ = RC

Thus, for large t the membrane potential saturates at a value V(∞) = I0R. If
V(∞) => Vth a spike is produced at time t∗ which satisfies

Vth = I0R
(
1 − e−t∗/τ

)
,

or

t∗ = τref − τ log
(
1 −

Vth

I0R

)
(7)

This mechanism is graphically illustrated in fig. 12.
Real neurons do not respond with a purely regular spike train of constant fre-

quency to a constant input current, as can be in the right part of fig. 12. Instead,
the firing rate is slowly decreasing with time. This can be easily incorporated in
the integrate-and-fire neuron model by introducing a time-dependent conductance
gadapt (with reversal potential equal to the resting potential). Each spike increases
this conductance by a fixed amount g0. Between spikes, gadapt decreases exponen-
tially to zero with a time constant τadapt:

C
dV
dt

= −
V
R
− gadaptV + I(t) (8)

τadapt
dgadapt

dt
= −gadapt (9)
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Figure 12: Behavior of the integrate-and-fire neuron when stimulated by a con-
stant current. Left A,B) When the current exceeds a minimal value, I0 > Vth/R,
the neuron will regularly emit a spike with frequency 1/t∗, as given by eq. 7. Right
B). Somatic membrane potential in a layer 5 pyramidal cell compartmental model
to a 1.5 nA current input. Right C) Response of a cell in the primary visual cortex
of the anesthetized adult cat to a 0.6 nA current injection. In both cases B and
C, the firing rate decreases gradually with time despite the constant input current.
Left C) The adapting IF model of eq. 9 can correctly reproduce these findings.
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If V reaches Vth, a spike is generated and gadapt is incremented by g0. Such a
mechanism can be interpreted as the effect of a calcium-dependent potassium con-
ductance. The ISIs produced by this adapting integrate-and-fire model reproduce
correctly the experimental neural data, as shown in fig. 12.

In vivo, the current I(t) is a sum of excitatory and inhibitory pre-synaptic
events. When we assume that

I(t) = ξ

with ξ = ±1 denoting an EPSP or IPSP, respectively, the IF model becomes similar
to the random walk model. However, an important difference is the leak term V/R.
Whereas, for the non-leaky IF model we can solve the first passage time problem
and obtain an analytical expression for the ISI distribution (see eq. 5), this is no
longer true when a leak term is included.

2.5 Summary
Neuron spiking is noisy and requires a statistical description. Such a description
can be done in terms of firing rates or inter-spike interval distributions. The co-
efficient of variation is a measure for deviation of spike train from regular firing
[18]. It is zero for a regular spike train and 1 for a Poisson process. If many pre-
synaptic events contribute to a spike (integration) one expects a low coefficient of
variation, which is not observed experimentally.

Most observed ISI distributions can be modeled with a Poisson, Gaussian or
first passage time distribution. We have assumed independence of subsequent
ISIs, which is often not true in particular for short ISIs. The FPT distribution, can
fit a large variety of distributions, but note that it cannot fit the Poisson distribu-
tion. When non-stationary input is presented, the distribution can be rather more
complicated (multi-modal). The discussion of the FPT distribution is based on
[19].

We have introduced two simplified neuron models: FPT and IF. They differ by
a passive leak term, which makes the FPT model solvable for stochastic input and
the IF model not. The IF model is more realistic because it takes into account that
the PSP decays with time with a time constant on the order of 5-15 ms. Various
approximations to the first passage time problem for the integrate-and-fire neuron
are studied in [20].

Even the IF model is approximate at best. We describe the electrical state of
the entire neuron by a single number. Real neurons have a complex geometry, and
the spike generation process can initiate at various loci. We ignore the fact that
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the size of the PSP depends on the membrane potential. This dependence is due to
the fact that the membrane conductance is voltage dependent (I = g(V)(V −Vrev)).

2.6 Exercises
1. Show that the Gamma distribution for large N becomes the Gaussian distir-

bution.

2. Verify that the Laplace transformation of f (t) = 1
√
πt

is f̂ (s) = 1
√

s .

3. For a diffusion process in one dimension that starts at t = t0 at location
v = v0, the probability to observe the membrane potential v at a later time t
is given by

p(t, v|t0, v0) =
1

√
2π(t − t0)σ

exp
(
−

(v − 〈v〉t)2

2σ2(t − t0)

)
with 〈v〉t = v0 + µ(t − t0). The first passage time distribution satisfies the
integral equation

p(t, vth|0, 0) =

∫ t

0
dt′p(t, vth|t′, vth)ρ(t′, vth)

(a) Using Laplace transforms, compute the first passage time distribution
for µ = 0, following the derivation in the text.

(b) Using Laplace transforms, compute the first passage time distribution
for general µ.

4. Compute the expected ISI time for the first passage time distribution.

5. Compute the output frequency of the FPT model with constant input µ and
compare with the IF model.
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3 Networks of binary neurons

3.1 Stochastic binary neurons and networks
We have seen that even for a very simple neuron model, such as the integrate-
and-fire model, the relation between the stochastic input and the output can be
too complex to be described in analytical form. Therefore, in order to study the
behavior of networks of neurons we may try to find a more compact description
of a neuron which ignores its internal details but retains some of its input-output
behavior. Let us look again at fig. 12Left C, which shows the output frequency
of a biologically realistic compartmental model of a layer 5 pyramidal cell as
a function of a constant input current. A very simple model that captures this
relation is to state that in each small but finite time interval ∆t the neuron can
either emit one spike or no spike. Thus, the output of the neuron is described by
a binary stochastic variable y = 0, 1 which defines the number of spikes in ∆t.
The probability of y = 1 is then proportional to the firing frequency of the neuron,
which as we see in fig. 12Left C is a non-linear function of the input current I:

p(y = 1) = σ(I)

A common choice for σ is the sigmoid function σ(x) = 1
2 (1 + tanh(x)). As a result

of the discretization of time in intervals of size ∆t, the maximal firing frequency
is clearly 1/∆t. In fig. 13, we show that the curves of fig. 12Left C can be re-
produced approximately in the binary neuron model. But it should be understood
that whereas real neurons adapt their firing rate through time, the firing rate of the
binary neuron is constant for any value of I and ∆t.

Suppose that we have a network of binary neurons and consider neuron i. The
current Ii represents the total current input to the neuron and consists of current
contributions Ii j from all neurons that make synaptic contacts onto the neuron
and that have recently fired (we will ignore temporal delays in the propagation of
action potentials). Therefore, we may write

Ii(t) =
∑
j,i

Ii jy j(t) + Θi

where Θi is a free parameter that must be adjusted such that σ(Θi) is equal to the
firing rate of the neuron in the absence of any input. t labels the discretized time
in units of ∆t. The probability of firing of neuron i at the next time step is thus
dependent on y(t) = (y1(t), . . . , yn(t)) which we call the state of the network at
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Figure 13: In the binary neuron model, the firing frequency of the neuron is a
non-linear function of the input current.

time t (n is the number of neurons in the network), or

p(yi = 1, t + 1|y(t)) = σ(
∑
j,i

Ii jy j(t) + Θi) (10)

For our subsequent analysis, we will find it useful to replace the binary vari-
ables yi = 0, 1 by the variables si = ±1 using the relation yi = 1

2 (yi + 1). Then
eq. 10 becomes

p(s′i , t + 1|s, t) = σ(s′ihi(s(t)) (11)

hi(s) =
∑
j,i

wi js j + θi

wi j =
1
2

Ii j

θi = Θi +
1
2

∑
j,i

Ii j

In Eq. 11, we have made use of the property σ(x) + σ(−x) = 1, which allows us
to write the probability for both s′i = ±1 in one expression and s = (s1, . . . , sn).
Note, that Eq. 11 does not explicity depend on time, but only implicitly through
the dependence of s on time.
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3.1.1 Parallel dynamics: Little model

Eq. 11 describes the conditional probability for a single neuron to emit a spike
between t and t+1, given an input activity s. In a network of neurons, this equation
must be updated in parallel for all neurons. Thus, the transition probability from
a state s at time t to a state s′ at time t + 1 is given by

T (s′|s) =
∏

i

p(s′i , t + 1|s, t) (12)

with p(s′i , t + τ|s, t) given by Eq. 11. T denotes the probability to observe the
network in state s′, given the fact that it was in state s at the previous time step.
Since the dynamics is stochastic, the network will in general not be found in any
one state but instead in a superposition of states. Therefore, the fundamental
quantity to consider is pt(s), denoting the probability that the network is in state s
at time t. The dynamics of the network is therefore defined as

pt+1(s′) =
∑

s

T (s′|s)pt(s). (13)

Eq 13 is known as a first order homogeneous Markov process. The first order
refers to the fact that the probability of the new state only depends on the current
state and not on any past history. Homogeneous means that the transition proba-
bility is not an explicit function of time, as can be verified by Eq. 11. This Markov
process was first considered by Little [21].

3.1.2 Sequential dynamics

One of the drawbacks of parallel dynamics is that due to the strict discretization
of time in intervals of length ∆t, an external clock is implicitly assumed which
dictates the updating of all the neurons. There exists another stochastic dynamics
which has been used extensively in the neural network literature which is called
sequential Glauber dynamics. Instead of updating all neuron in parallel, one neu-
ron is selected at random and is updated. The neurobiological motivation that
is sometimes given for this dynamics is that neurons are connected with random
delays [22]. However, in my view a more important reason for the popularity
of sequential dynamics is that the stationary distribution is a Boltzmann-Gibbs
distribution when the connectivity in the network is symmetric. This makes the
connection to statistical physics immediate and allows for all the powerful ma-
chinery of mean field theory to be applied. Also, the parameters (weights and
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thresholds) in the Boltzmann-Gibbs distribution can be adapted with a learning
algorithm which is known as the Boltzmann Machine [9].

The sequential dynamics is defined as follows. At every iteration t, choose a
neuron i at random. Update the state of neuron i using Eq. 11. Let s denote the
current state of the network and let Fi denote a flip operator that flips the value of
the ith neuron: s′ = Fis ⇔ s′i = −si and s′j = s j for all j , i. Thus, the network
can make a transition to state s′ = Fis with probability

T (s′|s) =
1
n

p(s′i , t + τ|s, t), if s′ = Fis (14)

and zero if s′ differs more thane one bit from s. p(s′i , t + τ|s, t) is again given
by Eq. 11. The factor 1

n is a consequence of the random choice of the neurons
at each iteration. The probability to remain in state s is given by the equality∑

s′ T (s′|s) = 1, so that

T (s|s) = 1 −
1
n

∑
i

p(s′i , t + τ|s, t). (15)

Eqs. 14 and 15 together with Eq. 13 define the sequential dynamics. Note, that
this dynamics allows only transitions between states s and s′ that differ at most at
one location, whereas the Little model allows transitions between all states.

3.2 Some properties of Markov processes
In this section, we review some of the basic properties of first order Markov pro-
cesses. For a more thorough treatment see [23].

3.2.1 Eigenvalue spectrum of T

Let S denote the set of all state vectors s. s ∈ S is a binary vector of length n
and thus s can take on 2n different values. Therefore, pt(s) in Eq. 13 is a vector of
length 2n and T (s′|s) is a 2n×2n matrix. Since pt(s) denotes a probability vector, it
must satisfy

∑
s pt(s) = 1. In addition, T (s′|s) is a probability vector in s′ for each

value of s and therefore each column must add up to one:∑
s′

T (s′|s) = 1. (16)

Matrices with this property are called stochastic matrices.
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Let us denote the eigenvalues and left and right eigenvectors of T by λα, lα, rα, α =

1, . . . , 2n, respectively 1. In matrix notation we have

Trα = λαrα
l†αT = λαl†α

Since T is a non-symmetric matrix, the left and right eigenvectors are different,
non-orthogonal and complex valued. † denotes complex conjugation and trans-
pose. The eigenvalues are also complex valued. Under rather general conditions
each set of eigenvectors spans a non-orthogonal basis of C2n

, the complex 2n di-
mensional space. These two bases are dual in the sense that:

l†αrβ = δαβ. (17)

δab denotes the Kronecker delta: δab = 1 if a = b and 0 otherwise. In Eq. 17, a and
b are simple numbers, but below we wull also see cases where they are vectors,
such as the state of the network. We can therefore expand T on the basis of its
eigenvectors:

T =

2n∑
α=1

λαrαl†α

If at t = 0 the network is in a state s0 then we can write the probability distri-
bution at t = 0 as p0(s) = pt=0(s) = δs,s0 . The probability vector pt at some later
time t is obtained by repeated application of Eq. 13:

pt = T t p0 =
∑
α

λt
αrα(l†α · p0) (18)

where T t p0 denotes t times the multiplication of the matrix T with the vector
p0, and the · denotes inner product. The stationary probability distribution of the
stochastic dynamics T is given by p∞ which is invariant under the operation of T
and therefore satisfies

T p∞ = p∞. (19)

Thus, the stationary distribution is a right eigenvector of T with eigenvalue 1.

1In general, the number of eigenvalues of T can be less than 2n. However, for our purposes we
can ignore this case
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3.2.2 Ergodicity and ergodicity breaking

A Markov process is called irreducible, or ergodic, on a subset of states C ⊂ S
if for any state s ∈ C there is a finite probability to visit any other state s′ ∈ C.
This means that for any two states s, s′ ∈ C, there exists a number k and a set of
intermediate states s = s0, s1, . . . , sk = s′ such that

∏k
i=1 T (si|si−1) > 0. In words,

between any two states in an irreducible set there exists a path of transitions with
non-zero probability. A subset of states C ⊂ S is called closed when the Markov
process can never escape from C, once entered: T (s′|s) = 0 for all s ∈ C, s′¬ ∈ C.
A subset of statesT is called transient when the Markov process can never enter in
T , once outside: T (s′|s) = 0 for all s < T , s′ ∈ T . It is a property of homogeneous
first order Markov processes that one can partition the state space S uniquely into
closed irreducible subsets Ci and a transient set T : S = T ∪ C1 ∪ C2 . . ..

For an irreducible Markov process of periodicity d the Perron-Frobenius the-
orem states that T has d eigenvalues given by

λm = exp(2πim/d),m = 0, . . . , d − 1,

and all remaining eigenvalues of T are inside the unit circle in the complex plane:
|λα| < 1 2 . In particular, T has exactly one eigenvalue 1. Its corresponding right
eigenvector is equal to the (unique) stationary distribution. Note, that the left
eigenvector with eigenvalue 1 is ∝ (1, . . . , 1) as is immediately seen from Eq. 16.
The right eigenvector, in contrast, is in general difficult to compute, as will be seen
later.

A non-irreducible or non-ergodic Markov process has more than one eigen-
value 1 and therefore more than one left and right eigenvector with eigenvalue

2 The fact that all eigenvalues are within the unit circle in the complex plane can be easily
demonstrated in the following way. Let λ be an eigenvalue of T and l its corresponding left
eigenvector. Then for all s,

(λ − T (s|s))l(s) =
∑
s′,s

l(s′)T (s′|s).

Choose s such that |l(s)| is maximal. Then

|λ − T (s|s)| =
1
|l(s)|
|
∑
s′,s

l(s′)T (s′|s)| ≤
∑
s′,s

T (s′|s) = 1 − T (s|s).

This statement is known as Gershgoren’s Theorem. Thus, λ is within a circle of radius 1 − T (s|s)
centered at T (s|s). We do not know which s maximizes |l(s)| and therefore we do not know the
value of T (s|s). However, since circles with smaller T (s|s) contain circles with larger T (s|s), λ is
in the largest circle: |λ| < 1. This completes the proof.
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1. Let us denote these eigenvectors by l1, . . . , lk and r1, . . . , rk, respectively. Any
linear combination of the right eigenvectors

p∞ =

k∑
α=1

ραrα (20)

is therefore a stationary distribution, assuming proper normalization: p∞(s) ≥ 0
for all s and

∑
s p∞(s) = 1. Thus, there exists a manifold of dimension k − 1 of

stationary distributions.
In addition, the k left eigenvectors with eigenvalue 1 encode invariants of the

Markov process in the following way. Let the state of the network at time t be
given by pt. Define the numbers Lt

α = l†α · pt, α = 1, . . . , k as the inner product of
lα with the probability distribution at time t. Then it is easy to see that the Lt

α are
invariant under the Markov dynamics:

Lt+1
α = l†αpt+1 = l†αT pt = l†αpt = Lt

α.

where the forelast step follows because lα is a left eigenvector of T with eigen-
value 1. We can thus drop the time index on Lα. One of these invariants is the left
eigenvector l1 ∝ (1, . . . , 1) which ensures that the normalization of the probabil-
ity vector pt is conserved under the Markov process. The value of the remaining
k − 1 invariants are determined by the initial distribution p0. Since their value is
unchanged during the dynamics they parametrize the stationary manifold and de-
termine uniquely the stationary distribution. We can thus compute the dependence
of the stationary distribution on the initial state. Because of Eq. 17 and Eq. 20, we
obtain Lα = l†αp0 = l†αp∞ = ρα. Thus, the stationary state depends on the initial
state as

p∞ =

k∑
α=1

(l†αp0)rα. (21)

Note, that in the ergodic case (k = 1) the dependence on the initial state disappears,
as it should, since l†1 p0 = 1 for any (normalized) initial distribution.

The time it requires to approach stationarity is also given by the eigenvalues of
T . In particular, each eigenvalue whose norm |λα| < 1 corresponds to a transient
mode in Eq. 18 with relaxation time τα = −1

log λα
.

Both concepts of irreducibility and periodicity are important for neural net-
works and we therefore illustrate them with a number of simple examples. Con-
sider a network of two neurons connected symmetrically by a synaptic weight
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w = w12 = w21 and thresholds zero. First consider sequential dynamics. The net-
work has four states, the transition matrix T can be computed from Eqs. 14 and 15
and has 4 eigenvalues. Their values as a function of w are plotted in Fig. 14a. We
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Figure 14: Eigenvalues of T as a function of w under sequential and parallel
dynamics. For large w, multiple eigenvalues 1 signal ergodicity breaking.

observe, that for small w there exists only one eigenvalue 1. Its corresponding
right eigenvector is the Boltzmann-Gibbs distribution p(s1, s2) =

exp(ws1 s2)
Z as will

be shown below. For small weights, the dynamics is ergodic: for any initialization
of the network the asymptotic stationary distribution is the Boltzmann-Gibbs dis-
tribution. The dominant relaxation time is given by the largest eigenvalue that is
smaller than 1. For larger w, we observe that the relaxation time becomes infinite
because a second eigenvalue approaches 1. This means that some transitions in
the state space require infinite time and therefore ergodicity is broken. From the
Boltzmann-Gibbs distribution, we see that the large weight prohibits the two neu-
rons to have opposite value and therefore only the states (1, 1) and (−1,−1) have
positive probability in this distribution. The ergodicity breaking signals the fact
that transitions between (1, 1) and (−1,−1) become impossible.

Let us denote the 4 states (1, 1), (1,−1), (−1, 1), (−1,−1) by sµ, µ = 1, . . . , 4.
The right eigenvectors with eigenvalue 1 are the Boltzmann-Gibbs distribution

r1(s) =
1
2

(δs,s1 + δs,s4)

and the vector
r2(s) =

1
2

(δs,s1 − δs,s4)
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The stationary distribution is no longer unique and consists of any linear combina-
tion of r1 and r2 that is normalized and positive: p∞ = r1 +ρ2r2, with −1 < ρ2 < 1.
As a result, any convex combination λδs,s1 + (1 − λ)δs,s4 , with 0 < λ < 1 is a
stationary distribution.

As we showed above, the particular stationary distribution that is attained by
the network is determined by the initial condition, in particular by the invariants
Lα. The left eigenvectors with eigenvalue 1 are

l1(s) = 1
l2(s) = δs,s1 − δs,s4

It can be checked that the vectors rα and lα satisfy the duality relation Eq. 17.
The corresponding quantities L1 and L2 are conserved and the dependence of the
stationary distribution on the initial distribution is given by Eq. 21:

p∞ = L1r1 + L2r2 =
1
2

(1 + L2)δs,s1 +
1
2

(1 − L2)δs,s4

L1 = 1 for any initial distribution that is normalized, and therefore is not of interest
to determine the final distribution. In particular, the 4 pure states are mapped onto:

s1 : L2 = 1 → p∞(s) = δs,s1

s2,3 : L2 = 0 → p∞(s) = r1(s)
s4 : L2 = −1 → p∞(s) = δs,s4

Since there are two eigenvalues 1, there are two ergodic components, each con-
sisting of one state (s1 and s4), and the remaining two states are transient.

For the same network with parallel dynamics, the eigenvalues are depicted in
Fig. 14b. For small weights the network is again ergodic. The stationary distri-
bution is given by Eq. 28 and is flat: independent of w and s. For large weights
ergodicity breaking occurs together with the occurence of a cycle of period 2 and
two additional eigenvalues 1. Thus, there are three ergodic components. Two er-
godic components are of period one and consist of one of the eigenvalues 1 (fixed
points states s1 and s4: T s1,4 = s1,4). The third ergodic component is of period 2
and consists of the eigenvalues 1 and -1 (a limit cycle of period 2 on states s2 and
s3: T 2s2 = T s3 = s2).

In these two examples we have seen that all the eigenvalues of T are real.
This is indeed in general true for both parallel and sequential dynamics when
the weights are symmetric: −1 ≤ λα ≤ 1. In addition, one can show for se-
quential dynamics (symmetric or asymmetric) that all eigenvalues are within the
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Figure 15: Eigenvalues of the transition matrix T are numbers in the complex
plane with |λ| ≤ 1. There is always at least one eigenvalue λ = 1. When the
system is ergodic, there is only one eigenvalue 1 and the stationary distribution
is unique and is reached for any initial state. When ergodicity is broken, there
are more eigenvalues λ = 1 and multiple stationary distributions. The asymp-
totic behavior then depends on the initial state of the network. The state space
is partitioned in ergodic components (plus a transition region). In addition, the
ergodic components can have periodicity d > 1, leading to additional eigenval-
ues λ = exp(2πim/d),m = 1, . . . , d, all with |λ| = 1. For sequential dynamics
(symmetric or asymmetric) all eigenvalues are within the circle centered at 1

2 + 0i
with radius 1

2 . Therefore, sequential dynamics has always periodicity 1. When
weights are symmetric, the eigenvalues are real. Therefore, parallel dynamics
with symmetric weights has at most periodicity 2. Parallel dynamics with asym-
metric weights can have arbitrary periodicity.

circle centered at 1
2 + 0i with radius 1

2 [22]. The proof of this last statement again
uses Gershgoren’s Theorem and the special property of sequential dynamics that
T (Fis|s) + T (s|Fis) = 1

n . As a consequence, sequential dynamics has always peri-
odicity 1 since other eigenvalues with |λ| = 1 are excluded. Note, that this property
holds regardless of whether the network has symmetric or asymmetric connectiv-
ity. It also follows that for parallel dynamics with symmetric weights one can
have at most periodicity 2 (because the eigenvalues are real). The spectrum of
eigenvalues of T in the complex plane is sketched in fig. 15.
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3.3 Summary
The behavior of a network of stochastic neurons can be dscribed as a first order
Markov process. The Markov process is a prescription of how the probability
distribution at time t over all the states of the network s = (s1, . . . , sn), pt(s), maps
onto pt+1(s), and is given by the transition matrix T (s′|s).

The transition matrix can be analysed in terms of its eigenvalues and eigenvec-
tors. The right eigenvectors with eigenvalue 1 give the stationary distributions of
T . When the Markov process is ergodic, there is a unique stationary distribution
that is asymptotically reached from all initial states. Such a network has therefore
no memory, because its stationary distribution contains no information about its
past.

When the Markov process is non-ergodic, there are multiple stationary distri-
butions. The asymptotic behavior of the network depends then on its initial state.
Such a network can be used as a memory, where each memory corresponds to
one of the ergodic components of the network. The attractor neural network that
we discuss in section 5.3 is a concrete example. The topic of Markov processes,
irreducibility and ergodicity is taken from [23, 24].

3.4 Exercises
1. (a) Compute the interspike interval distribution for the binary neuron as

defined in Eq. 11.
(b) Show that the distribution is normalized.
(c) Discuss the similarities and differences between the binary neuron

model and the Poisson process.

2. Consider a network of two neurons symmetrically connected by a synaptic
weight w = w12 = w21. Consider sequential Glauber dynamics as defined in
Eqs. 14 and 15.

(a) Write the transition matrix T in terms of the states s1, s2 and s′1, s
′
2.

(b) Write T explicitly as a 4 × 4 matrix in the limit that w → ∞. Show
that there are three eigenvalues 1.

(c) What are the invariants in this case?

3. Consider a network of two neurons symmetrically connected by a synaptic
weight w = w12 = w21. Consider parallel Glauber dynamics as defined in
Eq. 12.

37



(a) Write the transition matrix T in terms of the states s1, s2 and s′1, s
′
2.

(b) Write T explicitly as a 4 × 4 matrix in the limit that w → ∞. Show
that there are three eigenvalues 1.

(c) What are the invariants in this case?
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4 Boltzmann-Gibbs distributions
If we consider a stochastic neural network with a specific connectivity matrix,
what will the behavior of the network be? This is a rather difficult question to
answer in general, but in some specific cases quite a lot is known. In particular
for symmetrically connected networks with sequential dynamics, the equilibrium
distribution is the Boltzmann-Gibbs distribution which plays a central role in sta-
tistical physics. In this section we derive the Boltzmann-Gibbs distribution. Then
we indicate the computational problems associated with the computation of statis-
tics of the Boltzmann-Gibbs distribution. We introduce the mean field theory as a
simple approximation to compute the mean firing rates of the network and the lin-
ear response correction to approximately compute the correlations. We illustrate
the use of these methods on Boltzmann Machines, which are Boltzmann-Gibbs
distributions whose weights are thresholds are adapted through learning.

4.1 The stationary distribution
In the case that the synaptic connectivity is symmetric, wi j = w ji one can compute
the stationary probability distribution for the parallel and sequential dynamics ex-
plicitly. In both cases the derivation uses the argument of detailed balance, which
states that for the dynamics T (s′|s) there exists a function p(s) such that

T (s|s′)p(s′) = T (s′|s)p(s) for all s, s′. (22)

If detailed balance holds, it implies that p(s) is a stationary distribution of T ,
which is easily verified by summing both sides of Eq. 22 over all states s′ and
using Eq. 16. However, the reverse is not true: many stochastic dynamics do not
satisfy detailed balance and a solution to Eq. 19 is then typically not available in
analytical form, although its existence is dictated by the Perron-Frobenius theorem
[23].

For random sequential dynamics, T is given by Eqs. 14 and 11 and the de-
tailed balance equation reads T (Fis|s)p(s) = T (s|Fis)p(Fis) for all states s and all
neighbor states Fis. It is easy to show that

T (s|Fis)
T (Fis|s)

= exp(2(
∑

j

wi js j + θi)si). (23)

Consider the distribution

p(s) =
1
Z

exp(
1
2

∑
i j

wi jsis j +
∑

i

θisi). (24)
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p(s) is called a Boltzmann-Gibbs distribution and plays a central role in statistical
physics. For this reason, the expression in the exponent is often referred to as the
energy:

−E(s) =
1
2

∑
i j

wi jsis j +
∑

i

θisi. (25)

States of low energy have high probability. Z is a normalization constant,

Z =
∑

s

exp(−E(s)) (26)

and is called the partition function. p(s) only depends on the symmetric part of
the weights ws

i j and

p(s)
p(Fis)

= exp(2(
∑

j

ws
i js j + θi)si). (27)

Thus for symmetric weights, detailed balance is satisfied between all neighboring
states. Since all values of T are zero for non-neighboring states this proves that
p(s) is the equilibrium distribution. 3

4.2 Computing statistics
p(s) in Eq. 24 and 28 give an analytical expression of the stationary probability
distribution of an arbitrary network with symmetric connectivity and sequential
and parallel dynamics, respectively. From these equations we can compute any

3 When all neurons are updated in parallel, the transition matrix is given by Eq. 12. As in
the case of sequential dynamics, we can again compute the stationary distribution for symmetric
weights. We use again detailed balance:

T (s′|s)
T (s|s′)

=
exp(

∑
i j wi js js′i +

∑
i θis′i)

exp(
∑

i j wi js′jsi +
∑

i θisi)

∏
i

cosh(hi(s′))
cosh(hi(s))

.

When the weights are symmetric, the term involving the double sum over i and and j cancels and
the remainder is of the form p(s′)

p(s) , with

p(s) =
1
Z

exp(
∑

i

log cosh(
∑

j

wi js j + θi) +
∑

i

θisi). (28)

This is the equilibrium distribution for parallel dynamics [21].
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interesting statistics, such as for instance the mean firing rate of each of the neu-
rons:

mi = 〈si〉 =
∑

s

si p(s), (29)

and correlations between neurons:

χi j =
〈
sis j

〉
− 〈si〉

〈
s j

〉
=

∑
s

sis j p(s) − mim j. (30)

However, these computations are in general too time consuming due to the sum
over all states, which involves 2n terms.

For some distributions, the sum can be performed efficiently. For Boltzmann-
Gibbs distributions, the subset of probability distributions for which the sum over
states can be performed efficiently are called decimatable distributions [25]. These
include factorized distributions, trees and some other special graphs as sub sets.
For factorized distributions, p(s) =

∏
i pi(si), the energy only depends linearly on

si and the sum over states can be performed by factorization:

∑
s

exp(
∑

i

αisi) =
∏

i

∑
si

exp(αisi)

 =
∏

i

2 cosh(αi).

From Eqs. 24 and 28 we infer that this corresponds to the rather uninteresting case
of a network without synaptic connections. 4

In general, the sum over states can not be computed in any simple way. In this
case we call the the probability distribution intractable and one needs to apply
approximation methods to compute the partition function and statistics such as
Eq. 29 and 30.

4The probability distribution p(s) is called a tree when between any two neurons in the network
there exists only one path, where a path is a sequence of connections. Alternatively, one can order
the neurons in the graph with labels 1, . . . , n such that neuron i is connected to any number of
neurons with higher label but only to at most one neuron with lower label. For Boltzmann-Gibbs
distributions which are trees:∑

s

exp(
∑
(i j)

wi jsis j) =
∑

s

exp(
∑

i

wipi sispi ) =
∏

i

2 cosh(wipi ),

where pi labels the parent of neuron i. For parallel dynamics, such non-trivial decimatable struc-
tures do not exist.
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Figure 16: Illustration of the concavity property f (x) ≤ f (x0) + (x − x0) f ′(x0) for
the logarithmic function and x0 = 1.

4.3 Mean field theory
In this section, we will show how to approximate Z in Eq. 26 using the standard
mean field theory. In fact this approximation is a lower bound on Z. As a by-
product we will obtain an estimate of the mean firing rates of the neurons as well.

We can use Eq. 26 and write

log Z = log
∑

s

exp (−E(s)) = log
∑

s

q(s)
exp (−E(s))

q(s)

≥
∑

s

q(s) log
(
exp (−E(s))

q(s)

)
= − 〈E〉q + S q = −F (31)

q(s) is an arbitrary positive probability distribution on the state space s. The in-
equality is called Jensen’s inequality and follows from the concavity of the loga-
rithmic function and the fact that q(s) is a probability distribution:

∑
s q(s) = 1.

For any concave function f , we have f (x) ≤ f (x0) + (x − x0) f ′(x0), as illustrated
in fig. 16. Therefore, if we chose x0 = 〈x〉q, then 〈 f 〉q ≤ f (〈x〉q). Further we have

〈E〉q =
∑

s

q(s)E(s)

and
S q = −

∑
s

q(s) log q(s)
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is the entropy of the distribution q(s). The bound F on log Z is called the mean
field free energy.

Up to now, we have not specified q(s), except that it must be a normalized
probability distribution. We can in fact choose any probability distribution, but
in order to make the mean field method tractable, we should choose a tractable
distribution q(s). The simples choice is to choose for q(s) a factorized distribution
where all neurons are independent:

q(s) =
∏

i

qi(si), qi(si) =
1
2

(1 + misi).

mi is the expectation value of si under the distribution qi: mi = 〈si〉qi
. The mi, i =

1, . . . , n are undetermined parameters that specify the distribution q uniquely. F
is now given by

F = −
1
2

∑
i j

wi jmim j−
∑

i

θimi+
1
2

∑
i

(
(1 + mi) log(

1
2

(1 + mi)) + (1 − mi) log(
1
2

(1 − mi))
)
.

(32)
From Eq. 31, we have F ≥ − log Z, for any choice of mi. We get the tightest

bound on log Z by minimizing F wrt mi:

∂F
∂mi

=
∑

j

wi jm j + θi − tanh−1(mi)

Setting ∂F
∂mi

= 0 we obtain

mi = tanh(
n∑

j=1

wi jm j + θi) (33)

These equations are called the mean field equations. They consist of n non-linear
equations with n unknown, which has te be solved selfconsistently. The solution
mi provides us with an approximation to the mean firing rates of the intractable
Boltzmann distribution Eq. 29:

mi = 〈si〉q ≈ 〈si〉p

4.4 Linear response correction
We can also compute the correlations in the mean field approximation. The crucial
observation is that both the mean firing rates and the correlations can be computed
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as derivatives of the partition function:

〈si〉 =
∂ log Z
∂θi

χi j =
∂2 log Z
∂θi∂θ j

with the correlations χi j defined in Eq. 30. Combining these two expressions, we
can relate the correlations to the mean firing rates as

χi j =
∂ 〈si〉

∂θ j
≈
∂mi

∂θ j
(34)

where in the last step we have used the mean field approximation for 〈si〉. Because
the mean field equations give us an implicit relation between mi and θ j, we can
derive

∂θi

∂m j
=

δi j

1 − m2
i

− wi j. (35)

Thus the correlations can be computed by inverting this matrix. This approxima-
tion to the correlations is know as the linear response correction.

4.5 Boltzmann Machines
A well-known application of the Boltzmann-Gibbs distribution are Boltzmann
Machines [9]. The basic idea is to treat the distribution Eq. 24 as a statistical
model, and to use standard statistical tools to estimate its parameters wi j and θi.

Let us restrict ourselves to the simplest case, that all neurons receive sensory
input. The general case would be that only a subset of neurons (sensory neurons)
receive input and the rest of the network (the hidden neurons) receive no direct
input. The case with hidden neurons is somewhat more complex and is beyond
the scope of these lectures.

Learning can be described in the following way. Consider a set of P train-
ing patterns sµ = (sµ1, . . . , s

µ
n) with µ = 1, . . . , P. We wish to find the value of

the weights and thresholds, such that the Boltzmann-Gibbs distribution ’best’ de-
scribes these data. The standard statistics approach to this problem is to construct
the log likelihood of the observed data

L(w, θ) =
1
P

∑
µ

log p(sµ1, . . . , s
µ
n)
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and maximize this function wrt to w and θ.
This maximization can be easily performed by computing the gradients of L

wrt wi j and θi [9, 5]:

∂L
∂θi

=
(
〈si〉c − 〈si〉

)
,

∂L
∂wi j

=
( 〈

sis j

〉
c
−

〈
sis j

〉 )
i , j. (36)

The brackets 〈·〉 and 〈·〉c denote the ’free’ and ’clamped’ expectation values, re-
spectively. The ’free’ expectation values are defined as:

〈si〉 =
∑

s

si p(s) (37)〈
sis j

〉
=

∑
s

sis j p(s) (38)

with p(s) given by Eq. 24. The ’clamped’ expectation values are simply the statis-
tics computed in the training set:

〈si〉c =
1
P

∑
µ

sµi (39)

〈
sis j

〉
c

=
1
P

∑
µ

sµi sµj (40)

The simplest learning procedure is to start at t = 0 with a random initial value of
all weights and thresholds and to iteratively change these values in the direction
of their gradients:

wi j(t + 1) = wi j(t) + η
∂L
∂wi j

θi(t + 1) = θi(t) + η
∂L
∂θi

with η a small number. This so-called gradient ascent algorithm increases the
value of L at each step (for sufficiently small η) and terminates when the gradients
are zero, i.e. at a local maximum. From Eq. 36 we see that at a local maximum
of L, the first and second order statistics of the Boltzmann distribution p and the
data are equal. It is good to be aware that there exist much more sophisticated
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methods for maximizing a function, but the gradient ascent method is probability
the closest to biology.

The computation of the free expectation values is intractable, because the sums
in Eqs. 38 consist of 2n terms. As a result, the exact version of the BM learning
algorithm can not be applied to practical problems. We can however apply the
mean field approximation as discussed in the previous section. Given the weights
and thresholds at iteration t, we compute 〈si〉 from Eq. 33 and

〈
sis j

〉
from Eqs. 34

and 35 and insert these values into the learning rule Eq. 36. This approach can
also be applied when hidden units are present.

In the absence of hidden units we do not have to resort to an iterative learning
procedure, but we can set the lhs of Eqs. 36 equal to zero and solve these equations
directly. In the mean field approximation, these equations read:

mi = 〈si〉c (41)
χi j =

〈
sis j

〉
c
− mim j, i , j. (42)

mi is a function of wi j and θi as given by the mean field equations Eqs. 33. χi j is
a function of wi j and mi as given by the linear response equations Eqs. 34 and 35.
Eqs. 41 and 42 are n + 1

2n(n− 1) equations with an equal number of unknowns wi j

and θi and can be solved using standard numerical routines.
The righthandside of Eq. 42 can be computed from the data, because of Eq. 41.

Thus Eq. 42 is an matrix equation of the form

χ = C

with Ci j =
〈
sis j

〉
c
− 〈si〉c

〈
s j

〉
c
. If we invert this equation, we obtain

(C−1)i j = (χ−1)i j =
δi j

1 − m2
i

− wi j

where the last step is the result of Eqs 34 and 35. This gives an explicit solution
for wi j in terms of known quantities.

However, this procedure is incorrect, because Eq. 42 is only enforced off-
diagnonally. By using the following trick we can however still use this approach.
We introduce additional parameters, diagnonal weights wii, which we estimate in
the learning process. Thus, in the mean field equations Eq. 33 the sum over j now
also contains a term wiimi. We now need n additional equations for learning, for
which we propose the diagonal terms of Eq. 42: χii = 1 − m2

i . This equation is
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true by definition for the exact χ, but becomes an additional constraint on wi j and
θi when χ is the linear response approximation. Thus our basic equations become

mi = tanh(
n∑

j=1

wi jm j + θi) (43)

χ−1
i j =

∂θ j

∂mi
=

δi j

1 − m2
i

− wi j. (44)

From Eq. 41-44 we can compute the solution for wi j and θi in closed form:

mi = 〈si〉c (45)
Ci j =

〈
sis j

〉
c
− 〈si〉c

〈
s j

〉
c

(46)

wi j =
δi j

1 − m2
i

−
(
C−1

)
i j

(47)

θi = tanh−1(mi) −
n∑

j=1

wi jm j (48)

4.5.1 Classification of digits

We demonstrate the quality of the above mean field approximation for Boltzmann
Machine learning on a digit recognition problem. The data consists of 60000
training examples and 10000 test example of handwritten digits (0-9) compiled
by the U.S. Postal Service Office of Advanced Technology. The examples are
preprocessed to produce 28 × 28 binary images with noise added. See examples
in fig. 17.

Our approach is to model each of the digits with a separate Boltzmann Ma-
chine. For each digit, we use approx. 6000 patterns for training using the approach
outlined above. We thus obtain 10 Boltzmann distributions, each with its own pa-
rameters Wα = (wα

i j, θ
α
i ), α = 1, . . . , 10.

We then test the performance of these models on a classification task using
500 of the 10000 test patterns. We classify each pattern s to the model α with the
highest probability:

class(s) = argmaxαpα(s), pα(s) =
1

Z(Wα)
exp(

1
2

∑
i j

wα
i jsis j + θαi si)

The normalization Z(Wα) is intractable and depends on α and therefore affects
classification. We use its mean field approximation log Z ≈ −F, with F given by
Eq. 32.
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Figure 17: Sample of 60000 training patterns and 10000 test patterns of the 28 ×
28 handwritten digits of the U.S. Postal Service Office of Advanced Technology.
Patterns are binary and 10 % pixel noise is added.
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Test the performance on 500 of the 10000 test patterns classifies 45 incorrect.
Compare with simple template matching on the mean image yields 123 errors.

4.6 Summary
The Boltzmann-Gibbs distribution is the stationary distribution of the stochastic
neural network, when using sequential dynamics and symmetric weights. The
symmetric weights is a severe restriction, and is clearly not true for the synaptic
connectivity in the brain. However, if we view the binary neurons as describing
the average behavior of groups of neurons, as is customary in the connectionists
approach, symmetric connectivity is not so bad. It is often observed that the time-
delayed correlation between neurons shows a peak at delay zero, indication that
the ’effective’ connectivity is symmetric.

For non-symmetric networks the theoretical analysis is much harder and fewer
results are known. Most of the results have been obtained with numerical simu-
lations. It appears that when a sufficient amount of asymmetry is introduced, the
network dynamics is dominated by periodic orbits of different length. Thus asym-
metric networks are radically different from symmetric networks. The differences
between symmetric and asymmetric networks are discussed in [24].

Despite the fact that the stationary distribution can be given in a closed form
mathematical formula, the computation of any statistics of this distribution, such
as means and correlations is intractable. The mean field method, as introduced in
this chapter, allows to compute these quantities approximately. There exist more
powerful approximate methods. For a discussion of the extensions of mean field
theory see [26] and [27], as well as other contributions to that book.

Because the computation of means and correlations in stochastic is intractable,
also any learning method is intractable. The Boltzmann Machine learning paradigm
is the simplest learning method for stochastic neural networks.

4.7 Exercises
1. (a) Derive Eq. 23.

(b) Show that the detailed balance does not hold when the weights of the
neural network are not symmetric (wi j , w ji). In other words, show
that te Boltzmann distribution is not the stationary distribution of the
Glauber dynamics with asymmetric weights.
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2. Study the accuracy of the mean field and linear response method for a Boltz-
mann distribution on 2 neurons with equal threshold θ1 = θ2 = θ and con-
nected by a weigth w:

p(s1, s2) =
1
Z

exp(ws1s2 + θ(s1 + s2))

(a) Give an expression for the mean field equations to approximately com-
pute the firing rates for this network.

(b) Solve the mean field equations numerically for θ = w and various
values of w and compare the mean field approximation with the exact
result.

(c) Compute the linear response estimate of the correlations and compare
with the exact values.

3. Work out analytically the result of mean field learning with linear response
correction for the case of two neurons and a data set consisting of three
patterns (1,−1), (1, 1), (−1,−1).

4. Take home computer exercise. The objective is to 1) make you familiar with
the mean field approximation and the linear response correction and 2) to
numerically compare the accuracy of a Monte Carlo sampling method with
the mean field method.

• Write a program that can compute means and correlations in an Ising
model of n binary neurons using a Metropolis Hastings (MH) method.
Use si = ±1 coding. Choose the coupling matrix 1) with random
positive entries (ferromagnetic case) and 2) with random entries of
either sign (frustrated case). Choose the thresholds θi = 0.

• Write a program that can compute means and correlations in the same
Ising model using the mean field theory and linear response correction.

• We will rely on the results of the MH method to be an good approx-
imation of the exact result. To demonstrate the reliability of the MH
method, show that the results of different MH runs with different ini-
tializations are identical within the errors of individual runs. Note,
how the required length of the MH run depends on the n, on the size
of the weights and on whether the weights are ferromagnetic or frus-
trated.
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• Compare the quality of of the mean field approximation of the means
and correlations as a function of n, size of the weights for the ferro-
magnetic and frustrated case.

Provide plots and texts for all your results and conclusions.
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5 Attractor neural networks

5.1 Hebbian learning
Hebbian learning is the mechanism that neurons increase their connection strength
when both pre- and post-synaptic neuron are active at the same time. The mecha-
nism can be illustrated with the so-called McCulloch-Pitts neuron, which is given
in fig. 18. It should be noted that the McCulloch-Pitts neuron is nothing else but

Figure 18: The McCulloch-Pitts neuron model. When the total input activity
exceeds a threshold the output of the neuron is 1, otherwise it is 0
.

the noiseless limit of the binary neuron model of Eq. 11. If we scale the local field
in Eq. 11 with a parameter β, and consider the limit of β→ ∞, then

σ(βhi(y))→ Θ(hi(y))

where Θ(x) is the Heavyside step function as depicted in fig. 18Right.
With the McCulloch-Pitts neuron, it is easy to build logical circuits. For ex-

ample, consider a neuron with two inputs y1 and y2, both with synaptic strength
wi = 1. The output of the neuron is

y = Θ(y1 + y2 − θ)

If we choose θ = 3/2, y compute the logical AND of y1 and y2. If we choose
θ = 1/2, y compute the logical OR of y1 and y2. With these basic functions (plus
a few others such as the inverter), one can build any logical function of some
binary variables. The insight that neurons can compute any function can be used
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Figure 19: a) In psychology, the behavior of the subject is described in terms of
stimulus and response. b) Habituation. Repeated presentation of the same stim-
ulus gives a response that decreases with time. c) No habituation. Repeated pre-
sentation of the same stimulus gives the same response, regardless of the number
of stimulations.

to show that the brain could in fact implement a Turing machine. However, we
have seen that the McCulloch-Pitts neuron model is rather simple compared to the
full complexity of real neurons. Therefore, the idea that the brain is a universal
computer should not be taken too literaly.

The McCulloch-Pitts neuron can by nicely used to illustrate the concept of
Hebbian learning which has its origin in psychology. In psychology, the behavior
of ’subjects’ (people or animals) is described in terms of stimulus and response
(fig. 19a). The response to a stimulus may change upon repeated presentation. For
instance, if you ring a bell, a dog will turn its head. But if you repeat this many
times, the dog will get bored and no longer pay attention to the bell (fig. 19b).
Other stimuli do not show any habituation. For instance, if you show a dog a piece
of meat, the dog will salivate and will continue doing so on any future presentation
of meat (fig. 19c).

Now, we turn to a little more complex experiment known as classical condi-
tioning. The dog is presented with two stimuli, a nice piece of red meat and the
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Figure 20: Classical condition. A stimulus (CS) initially does not evoke a response
(UR). After repeated presentation in conjunction with another stimulus (US) that
by itself does evoke a response, CS by itself will also evoke a response.

bell (fig. 20top). Upon presentation of only meat, the dog salivates. Upon presen-
tation of only the bell, the dog does not salivate. When both stimuli are presented
together, the dog will salivate because he sees the meat. After several trials, how-
ever, the dog will also start to salivate when only the bell is rung (because he is
expecting the meat as well!). The meat is called the conditioned stimulus (CS) and
the bell is called the unconditioned stimulus (US). The salivating response is called
the unconditioned response. A typical trial of CS and US through time is shown
in fig. 20middle and the unconditioned response to the conditioned stimulus as a
function of trial number is shown in fig. 20bottom left. Fig. 20bottom right shows
that the effect of classical conditioning is maximal when the CS slightly precedes
the US.

Classical conditioning as well as habituation, are thought to the be result of
learning. Learning means in broad terms that the subject adapts itself such that its
response after some time is different from its initial response. Classical condition-
ing can be easily understood in terms of the McCulloch-Pitts neurons. Clearly, in
the brain there are no individual neurons that encode ’meat’, ’bell’ and ’salivate’.
Instead, in the psychological modeling literature it is customary to use neurons
and their inputs to represent ’functional regions’ in the brain (this approach to
modeling is called connectionism).
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The McCulloch-Pitts neuron is given by

y = Θ(wuyu + wcyc − θ)

where yu,c = 0, 1 denote the activity of the unconditioned and conditioned stimuli
and y = 0, 1 denotes the activity of the salivate neuron. wu,c are the effective
connections between yu,c and y and are assumed to be subject to learning. Initially,
we have wc < θ and wu > θ to ensure that the dog does not respond to the bell, but
does respond to the meat. After classical conditioning the dog responds to either
bell or meat, and thus wc > θ and wu > θ.

The fact that wc is increased, only when CS and US are both presented and
not when CS is presented alone has given rise to the Hebbian learning rule which
states that the change in the connections between neuron j and i is proportional to
the product of pre- and post-synaptic neuron acitivity:

∆wi j ∝ y jyi (49)

With j = u, c and and i the salivate neuron, the stimulus CS by itself is not able to
increase the connection wc because it does not evoke a response (yi = 0). When
both CS and US are present, yc = yi = 1, and the connection wc is increased.
The rationale is that when a presynaptic spike contributes to the firing of the post
synaptic neuron, it is likely that its contribution is of some functional importance
to the animal and therefore the efficacy of the responsible synapse should be in-
creased.

Hebbian learning is not only manifest in psychological experiments. Also at
the single neuron level the Hebb rule is to a certain extend observed in several
brain areas (see fig. 21) and as is also clearly seen in the experiment shown in
fig. 2. However, the learning rule as given by Eq. 49 is in general considered to be
too simple. In particular, synapses display an interesting short time dynamics as
is evident from fig. 2 and display both strenghtening (LTP) and weakening (LTD)
depending on the relative timing of the pre- and postsynaptic activity.

5.2 Short-term and long-term memory
Many mental abilities require to hold information temporarily in an accessible
form. An obvious proposal to implement short-term memory on a physiological
level would be to hold the corresponding neural activity over a certain duration
of time. An illustrative example is shown in fig. 22. A monkey was trained to
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Figure 21: The amount and type of synaptic modification evoked by repeated
pairing of pre-and postysnaptic action potentials in different preparations. The
horizontal axis is the difference between the times of these spikes. Pairing can
result in increased synaptic strength (LTP) or decreased synaptic strength (LTD).
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Figure 22: Short-term memory. Maintenance of neural activity in the absence of
a stimulus shows evidence of recurrent dynamics in neural networks [28].

maintain its eyes on a central fixed spot until a ’go’ signal, such as a tone, indi-
cated that it should move the eyes and to focus on one of several possible targets
peripheral to the fixed spot. The choice of the target to which the eye should be
moved in each trial was indicated by a short flash, but the subject was not allowed
to move its eyes from the time of disappearance of the target cue until the ’go’ sig-
nal. Thus, the target location for each trail had to be remembered during the delay
period. The experimenters recorded from neurons in the dorsolateral prefrontal
cortex (area 46) and found neurons that were active during the delay period.

An area in the medial temporal lobe is called the hippocampus for its shape
resembles a seahorse (see fig. 23). The hippocampus has been associated with
the a form of long-term memory called episodic memory. This type of ememory
refers to the storage of events, where each single event can be a vast collection of
associations such as the encouter with a particular object at a certain location at a
acertain time. Within the hippocampus there is an area called CA3 that has been
assumed to act as a recurrent network and to perform recall and pattern completion
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Figure 23: Neuronal elements of the hippocampal formation in rodents as drawn
by Ramon y Cajal around 1900. The hippocampus has been associated with the a
form of long-term memory called episodic memory.
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tasks.
The hippocampus has been implicated in the acquisition of episodic long-term

memory because it has been shown that a patient in whom is was necessary to
remove this structure suffered subsequently from a form of amnesia marked by
the inability to form new long-term memories of episodic events. In contrast,
long-term memory that was acquired before the removal of this structure as well
as the ability to learn new motor skills was not impaired. The precise involvement
of the hippocampus in memory acquisition is still under debate, and the neural
mechanisms of human episodic memory abilities are mostly unclear. So far, it
seems that the hippocampus can store some forms of memory for a considerable
length of time until the content is stored permanently in other cortical areas.

A possible mechanism for Hebbian learning in the CA3 area of the hippocam-
pus is provided by mossy fibres from the dentate granule cells in the hippocampus
onto CA3 neurons. These fibres could provide the necessary signal to indicate
when learning should take place. Interestingly, mossy fibres have the largest
synapses found in the mamalian brain. Thus, it is possible that signals along
mossy fibres command the firing of specific CA3 neurons at the right time to en-
able the formation of new associations through Hebbian learning.

5.3 Attractor neural networks
The attractor neural network is an example of how recurrent connections in a neu-
ral network can make useful computation. The attractor neural network stores a
number of patterns as attractors of the neuron dynamics by adjusting the con-
nections between the neurons. The behavior of the attractor neural network is
illustrated in fig. 24left. When the network is initialized in a certain state, the
network evolves to the nearest attractor (fig. 24right).

The idea to use recurrent dynamics as a form of computation in neural net-
works goes back to the work of [29]. Its formulation for binary neurons was first
proposed by [21] and the analysis of the behavior of the network in which the con-
nections are the result of Hebbian learning was done by [6], and later extended in
a series of papers by Amit, Gutfreund and Sompolinsky [10, 11].

Consider a network of McCulloch-Pitts neurons. The dynamics of the network
is given by

si(t + 1) = sign(
∑

j

wi js j(t) + θi) (50)

A state of the network ξ = (ξ1, . . . , ξn) is called a fixed point if it is unaltered under
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Figure 24: Left) Behavior of an attractor neural network of binary neurons. Three
stored patterns are shown (right column), which can be retrieved by initializing the
network in a noisy version of the patttern (top row), or part of the pattern (bottom
two rows). Right) State space of the network is divided in basins of attraction for
each of the stored patterns.
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Figure 25: When a pattern ξ is stored in an attractor neural network its anti-pattern
−ξ is also a fixed point of the dynamics.

the dynamics eq. 50. Given a set of patterns ξµi , µ = 1, . . . , P, i.e. states of the
network that we wish to store, the learning task is to find the connections wi j such
that these patterns are stable fixed points of the dynamics.

Consider first the simple case of storing one pattern ξ. Memorisation requires
stability of ξ:

sign(
∑

j

wi jξ j) = ξi

A suitable weight matrix is given by the outer product of the pattern with itself:

wi j =
β

n
ξiξ j, (51)

where the factor β/n is irrelevant at this moment (because of the sign operation),
but will be useful shortly. The threshold θi = 0. If we start in an arbitrary state
s and update all neurons once, we have si(t = 1) = ξisign(

∑
j ξ js j(t = 0)). Thus,

the state of the network after one time step is ±ξ. Both ξ and −ξ are fixed points
of the dynamics. The sign depends on the overlap of s with the pattern ξ at t = 0
(see fig. 25).

When we want to store many patterns, we generalize Eq. 51 to

wi j =
β

n

∑
µ

ξ
µ
i ξ

µ
j (52)

Suppose that we initialize the network in one of its patterns, say pattern ξν and ask
ourselves whether the state can be a fixed point of the dynamics. The local field is
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Perror p/n
0.001 0.105
0.0036 0.138
0.01 0.185
0.05 0.37
0.1 0.61

Figure 26: When P random patterns are stored, the probability that pattern ν is
a fixed point decreases with P, due to destructive interference with other patterns
µ , ν. The probability of error per neuron is given by Perror = Prob{Ci > 1} and is
a function of P/n.

given by

hνi =
∑

j

wi jξ
ν
j =

β

n

∑
j,µ

ξ
µ
i ξ

µ
j ξ
ν
j

= β

ξνi +
1
n

∑
j,µ,ν

ξ
µ
i ξ

µ
j ξ
ν
j

 = βξνi (1 −Ci)

with Ci = −
ξνi
n

∑
j,µ,ν ξ

µ
i ξ

µ
j ξ
ν
j . Thus, the local field consists of the sum of two terms.

One is the pattern ξν that the network is in (called the signal). The other is a term
that consists of a sum over all other patterns and all neurons (the noise). When
all the bits of all the patterns are chosen randomly and independently ξµi = ±1,
Ci is the sum of a number of independent random contributions. Due to the law
of large numbers, Ci becomes Gaussian distributed with mean zero and variance
σ =

√
p/n. Thus we see that the signal contribution will dominate the noise

contribution if the number of patterns is small compared to the number of neurons.
In that case sign(hi) will be sufficiently similar to ξνi to ensure that ξnu is a fixed
point of the dynamics.

Because Ci is Gaussian distributed, we can easily compute the probability
Perror that sign(hi) , ξνi . Perror measures the initial stability: when we start in the
fixed point a fraction of Perror bits will be wrong after one step. In subsequent
steps, the dynamics may still return to ξν or errors may accumulate with time. As
we will show later, correct retrieval occurs as long as p/n < 0.138.
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Learning rule eq. 52 is similar to the Hebbian learning rule, discussed in sec-
tion 5.1 in the sense that it depends on both pre and postsynaptic activity and if we
imagine that µ labels time. However, there are also some important differences.
First of all, the sign of the weight can be either positive or negative whereas real
synaptic connections normally cannot change from excitatory to inhibitory as a
result of learning. Secondly, the connectivity is symmetric and does not obey
the temporal and spatial asymmetry of fig. 215. Thirdly, the rule 51 prescribes a
strenghening of the connection when both pre- and postsynaptic neuron are inac-
tive, which is not biologically plausible. Dispite these shortcomings, the model is
important because it illustrates the strengths and weaknesses of recurrent compu-
tation.

5.3.1 The role of noise

As we have seen before, neuron firing is noisy. What happens to the attractor neu-
ral network when we consider noisy firing, i.e. when we replace the McCulloch-
Pitts neuron by its stochastic version Eq. 11?

We have seen in section 4 that for symmetric connections the probability to
observe the network in a state p(s) is given by the Boltzmann-Gibbs distribution.
Fortunately, the Hebb rule Eq. 52 is symmetric and we can therefore directly apply
the results from that section.

Using Eqs. 24 and 52, the equilibrium distribution is given by:

p(s) =
1
Z

exp(−βE(s)), E(s) = −
1

2n

∑
µ

(ξµ · s)2 (53)

with ξµ · s =
∑

i ξ
µ
i si. Thus, the network dynamics is characterized by an energy

function that has local minima at each of the p patterns ξµ (see fig. 27).
To understand the effect of noise on the network, consider the case of one

pattern (p = 1). The energy is given by

E(s) = −
1

2n

∑
i j

ξiξ jsis j = −
1

2n

∑
i j

ηiη j

where we have introduced the new binary variable ηi = ξisi = ±1. Thus in terms of
η, we have a fully connected network where each neuron is connected to all other
neurons with connections strength β. This network is known as a ferro-magnet
where the neuron states ±1 correspond to spin up or down (see fig. 28). For

5Note that for the case of fig. 21a if firing of neuron i precedes firing of neuron j, w ji will
increase and at the same time wi j will decrease. Thus wi j and w ji are unlikely to be identical.
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Figure 27: The network dynamics is characterized by an energy function that has
local minima at each of the p patterns ξµ.

small β: 〈si〉 = 0 large β: 〈si〉 , 0

Figure 28: Attractor network with one pattern is equivalent to a (fully connected)
ferro-magnet. For small coupling (small β), neurons behave independently and
the mean firing rate is zero. For strong coupling, neurons ’allign’ to all +1 or all
−1.
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Figure 29: Left) Graphical solution of m = tanh(βm). For small β, only m = 0 is
a solution. For β > 1 the equation has two stable solutions with m , 0 and the
solution m = 0 is unstable. Right) Solution m versus ’temperature’ T = 1

β
. For

small T only one of the two solutions is shown.

small coupling (small β), neurons behave independently and the mean firing rate
is zero. For strong coupling, neurons ’allign’ to all +1 or all −1. This behavior can
be easily understood from the mean field equations that we derived in section 4.3.
We apply Eq. 33 with wi j =

β

n and obtain

m = tanh(βm), m =
1
n

∑
j

m j

For β < 1, this equation has one stable solution m = 0. For β > 1, this equation
has two stable solution m , 0 and the solution m = 0 is unstable. The solutions
are graphically illustrated in fig. 29. Since

m =
1
n

∑
i

ξi 〈si〉

it measures the inner product of the average network state with the stored pattern
ξ. We see that for small noise (small T ) the memory is retrieved and for large
noise the memory is lost. These two phases are known as the ferromagnetic and
paramagnetic phase, respectively.

For large P, Eq. 53 will not only have local minima at each of the 2P patterns
(patterns and anti-patterns), but in addition two other types of local minima are
introduced: the (odd) mixture states and the spin-glass states. The odd mixture
states are linear combinations of an odd number of memories. For instance, if
ξµ, ξν and ξρ are three memories, a 3-mixture is any of the eight possibilities ξ3

i =
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sign(±ξµi ± ξ
ν
i ± ξ

ρ
i ). The odd mixtures have higher energies and are therefore

meta stable at finite temperature. The odd mixtures have a finite overlap with the
memories. The spin-glass states are other local minima of the energy that have a
vanishing overlap with any of the memories when n→ ∞.

We have seen that patterns can be stored as fixed points in the attractor neural
network as long as 1) the number of patterns is not too large and 2) the noise is not
too large. One can analyze the stability of the fixed points for any value of β and
α = p/n. The result is given in fig. 30. In region A and B, memories are stable
fixed points. In A they are global minima. In B they are only local minima: there
are spin-glass states with lower energy than the memories. In C, the memories are
unstable, but there are stable spin-glass states. In D the noise is so large that all
memories are lost and only the state mi = 0 is stable.

5.4 Summary
We have seen that Hebbian learning is widespread throughout the brain and is
also observed at the functional level in the form of classical conditioning. The
topic of classical conditioning and its relation to Hebbian learning is taken from
[22]. It is unlikely the only form of plasticity in the brain. Other forms are fast
accomodation of the eye to changing light conditions changing neuro-transmitter
concentrations that may affect the global behavior of groups of neurons.

Our discussion on short-term and long-term memory is taken from [30]. We
showed an example of short term memory: a delayed reward task that requires
recurrent computation to maintain the activity of the specific neurons. Although
this indicates that recurrent computation is present in the brain, it is unclear how
adaptation of synaptic connections operate to achieve this phenomenon.

It is commonly suggested that long-term memory is the result of permanent
changes in the synaptic connectivity between neurons, such as observed physi-
ologically as LTP and LTD. Associative memory, where retrieval occurs when
triggered by part of the content of the memory, can then be implemented as an
attractor neural network, where each of the attractors represent one memory. We
have discussed an implementation of this idea due to John Hopfield, the attractor
neural network [5]. It should be stated, however, that there is at present not much
direct experimental evidence of attractor neural networks in the brain.

5.5 Exercises
1. (a) Show that Cν

i in section 5.3 has mean zero and variance
√

p/N.
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Figure 30: Storage capacity of the attractor neural network for various values of
α =

p
n and β = 1

T .
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Figure 31: A) Simple Perceptron B) Multi-layered Perceptron

(b) Compute Perror in fig. 26.

2. (a) Show that the energy function E(s) in Eq. 53 decreases (or remains
constant) with each step of the sequential dynamics Eq. 50.

(b) Use this fact to show that the dynamics Eq. 50 converges to a fixed
point.

3. (a) Compute the energy of pure memories.

(b) Compute the energy of 3-mixture states (Hint: first compute the inner
product of the mixture with one of the pure states and ignore the inner
product with all other patterns) and thus show that the energy of 3-
mixtures is higher than of pure memories.

6 Perceptrons
Perceptrons are feed-forward neural networks. Examples are given in Fig. 31.
Consider a simple perceptron with one output:

o = g(h) = g

 n∑
j=1

w jξ j − θ

 = g

 n∑
j=0

w jξ j


with weights w j and inputs ξ j. ξ0 = −1 and θ = w0. g is a non-linear function.

Learning: Given a number of input-output pairs (ξµj , ζ
µ), µ = 1, . . . , P, find w j

such that the perceptron output o for each input pattern ξµ is equal to the desired
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output ζµ:

oµ = g

 n∑
j=0

w jξ
µ
j

 = ζµ, µ = 1, . . . , P

6.1 Threshold units
Consider the simplest case of binary threshold neurons:

g(h) = sign(h)

Then, the learning condition becomes

sign(w · ξµ) = ζµ, µ = 1, . . . , P

Since ζµ = ±1, we have

sign(w · ξµζµ) = 1 or w · xµ > 0

with xµj = ξ
µ
j ζ
µ.

6.2 Linear separation
Classification depends on sign of w · ξ. Thus, decision boundary is hyper plane:

0 = w · ξ =

n∑
j=1

w jξ j − θ

Perceptron can solve linearly separable problems. An example of a linearly sepa-
rable problem is the AND problem: The output of the perceptron is 1 if all inputs
are 1, and -1 otherwise (see Fig. 32).
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Figure 32: The AND problem for two inputs is linearly separable.

By definition, problems that are not linearly separable need more than one
separating hyper plane to separate the two classes. An example of a non-linearly
separable problem is the XOR problem: The output is equal to the product of the
input values (see Fig. 32A). Other problems that are not linearly separable occur
when three or more input patterns are linearly dependent (see Fig. 32B).

6.3 Perceptron learning rule
We have seen that the desired weight vector satisfies

w · xµ > 0, all patterns (54)
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Figure 33: The perceptron learning rule in action. Learning rule Eq. 55 is applied
to all patterns in some random or given order. Learning stops, when a weight
configuration is found that has positive inner product with all training patterns.

We define the following perceptron learning rule:

wnew
j = wold

j + ∆w j

∆w j = ηΘ(−w · xµ)ξµj ζ
µ = ηΘ(−w · xµ)xµ (55)

η is the learning rate. This learning rule is Hebbian in the sense that the change
in weight is proportional to the product of input and output activity. The function
Θ is 1 for positive arguments and zero otherwise: When presenting pattern µ,
learning only occurs, when the condition w · xµ > 0 is not satisfied for that pattern.

In Fig. 33 we show the behavior of the perceptron learning rule with η = 1.
The dataset consists of three data patterns x1, x2 and x3. The initial weight vector
is w. Presenting pattern x1, we note that w · x1 < 0 and therefore learning occurs.
The resulting weight vector is w′ = w+ x1. Presenting pattern x2 and x3 also result
in learning steps and we end up in weight configuration w′′′. This weight vector
has positive inner product with all training patterns and learning terminates.

Depending on the data, there may be many or few solutions to the learning
problem, or non at all! In Fig. 34 we give examples of two data sets and their so-
lutions Eq. 54. In Fig. 34A there are more admissible weight vectors and they can
have a larger inner product with all training patterns than in Fig. 34B. We define
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Figure 34: Two examples of data sets and the sets of w that satisfy condition
Eq. 54. A) Many solutions B) Few solutions.

the quality of the solution w by the pattern that has the smallest inner product with
w. Since the solution does not depend on the norm of w, we define the quality as

D(w) =
1
‖w‖

min
µ

w · xµ

The best solution is given by Dmax = maxw D(w).
In Fig. 35, we illustrate this for a given data set and two admissible solutions w

and w′ and their values of D respectively. Since D(w′) > D(w), w′ is the preferred
solution.

If we can find a w such that D(w) > 0 the problem is linearly separable and
learnable by the perceptron learning rule. If the problem is not linearly separable
not such solution exists.

6.3.1 Convergence of Perceptron rule

In this section we show that if the problem is linearly separable, the perceptron
learning rule converges in a finite number of steps. We start with initial value
w = 0. At each iteration, w is updated only if w · xµ < 0. After some number of
iterations, let Mµ denote the number of times pattern µ has been used to update w.
Thus,

w = η
∑
µ

Mµxµ

M =
∑
µ Mµ is the total number of iterations in which the weight vector is

updated. If the learning rule converges, it means that M is finite and does not
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Figure 35: Two admissible solutions w and w′ and their values of D respectively.
Since D(w′) > D(w), w′ is the preferred solution.

grow indefinitely.
The proof goes as follows. Assume that the problem is linearly separable, so

that there is a solution w∗ with D(w∗) > 0. We will show that

O(
√

M) ≤
w · w∗

‖w‖‖w∗‖
≤ 1

where the second inequality follows simply from the definition of the inner prod-
uct, and we will show the first inequality below. Thus, M can not grow indefinitely
and the perceptron learning rule converges in a finite number of steps.

The proof of the first inequality is elementary:

w · w∗ = η
∑
µ

Mµxµ · w∗ ≥ ηM min
µ

xµ · w∗ = ηMD(w∗)‖w∗‖

∆‖w‖2 = ‖w + ηxµ‖2 − ‖w‖2 = 2ηw · xµ + η2‖xµ‖2 ≤ η2‖xµ‖2 = η2N

The inequality in the second line makes use of the fact that for each training pattern
where learning takes place w · xµ < 0. The norm of w is thus bounded by

‖w‖2 ≤ η2NM

Combining these two inequality, we obtain Thus,
w · w∗

|w||w∗|
≥
√

M
D(w∗)
√

N
(56)

73



which completes the proof. Note, that the proof makes essential use of the exis-
tence of w∗ with D(w∗) > 0. If D(w∗) < 0 the bound Eq. 56 becomes a trivial
statement and does not yield a bound on M.

If the problem is linearly separable, we can in conclude that the number of
weight updates:

M ≤
N

D2(w∗)
where N is some trivial constant. We see that convergence takes longer for harder
problems (for which D(w∗) is closer to zero).

6.4 Linear units
We now turn to a possibly simpler case of linear units:

oµ =
∑

j

w jξ
µ
j

Desired behavior is that the perceptron output equals the desired output for all
patterns: oµ = ζµ, µ = 1, . . . , P. In this case, we can compute an explicit solution
for the weights. It is given by

w j =
1
N

∑
ρν

ζρ
(
Q−1

)
ρν
ξνj , Qρν =

1
N

∑
j

ξ
ρ
jξ
ν
j (57)

Q is a matrix with dimension P × P and contains the inner products between the
input patterns.

To verify that Eq. 57 solves the linear perceptron problem, we simply check
for one of the input patterns (ξµ) whether it gives the desired output:∑

j

w jξ
µ
j =

1
N

∑
ρ,u, j

ζρ
(
Q−1

)
ρν
ξu

jξ
µ
j

=
∑
ρ,u

ζρ
(
Q−1

)
ρν

Qνµ

=
∑
ρ

ζρδρµ = ζµ
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For this solution to exist, Q must be invertible which means that Q must be of
maximal rank (rank P). Therefore P ≤ N. 6

When P < N the solution w j = 1
N

∑
ρν ζ

ρ
(
Q−1

)
ρν
ξu

j is not unique. In fact, there
exists a linear space of dimension N − P of solutions w. Namely, let

w0
j =

1
N

∑
ρν

ζρ
(
Q−1

)
ρν
ξu

j

w j = w0
j + ξ⊥

with ξ⊥ an n-dimensional vector that is perpendicular to all training patterns: ξ⊥ ⊥
{ξµ}. Then the output of the perceptron is unaffected by ξ⊥:

ζµ =
∑

j

w jξ
µ
j =

∑
j

(w0
j + ξ⊥j )ξµj =

∑
j

w0
jξ
µ
j

6.4.1 Gradient descent learning

Often P > N, and thus patterns are linearly dependent. In general, one can define
a learning rules through a cost function, that assigns a cost or quality to each
possible weight vector. A common cost function is the quadratic cost:

E(w) =
1
2

∑
µ

ζµ −∑
j

w jξ
µ
j


2

which is minimized when the actual perceptron output
∑

j w jξ
µ
j is as close as pos-

sible to the desired output ζµ for all patterns µ.
6In addition, the input patterns must be linearly independent. If the input patterns are lin-

early dependent, solution Eq. 57 does not exist unless the corresponding outputs are also linearly
dependent. Linear dependence of the inputs implies that there exists αµ such that∑

µ

αµξ
µ
j = 0

This implies that ∑
µ

αµζµ =
∑
µ j

w jα
µξ

µ
j = 0

in other words, that the outputs cannot be chosen at freely. For problems with linearly dependent
inputs and matched linearly dependent output Eq. 57 can be used by restricting the training set to
a linearly independent subset that spans the training set, and computing Q for this subset.
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The cost function can be minimized by the so-called gradient descent proce-
dure. We start with an initial random value of the weight vector w and we compute
the gradient in this point:

∂E
∂wi

= −
∑
µ

ζµ −∑
j

w jξ
µ
j

 ξµi
We change w according to the ’learning rule’

wi = wi + ∆wi ∆wi = −η
∂E
∂wi

(58)

and repeat this until the weights do not change any more.
When η is sufficiently small, it is easy to verify that this gradient descent pro-

cedure converges. The proof consists of two observations. One is that for small η,
E(w) decreases in each step, and the other is that E(w) is bounded from below, so
that it has a smallest value. Therefore E cannot continue decreasing indefinitely
and must converge to some stationary value (see Exercises).

6.4.2 The value of η

What is a good value form η? Clearly, when η is very small, convergence is
guaranteed, but in practice it may take a very long time. If η is too large, however,
convergence is no longer guaranteed. The problem is further complicated by the
fact that the optimal choice of η is different for different components of the weight
vector w. This is illustrated in Fig. 36, where E as a function of w is drawn. This
valley has a unique minimal value for E, but the curvature in two directions is very
different. In the long (flat) direction, large steps can be made, but in the orthogonal
direction only small steps are allowed. We can analyze the problem, by assuming
that the energy has the form

E(w) =
1
2

∑
i

ai
(
wi − w∗i

)2
+ E0

with w∗ the location of the minimum, and ai the curvatures in the two directions
i = 1, 2. Eq. 58 becomes

∆wi = −η
∂E
∂wi

= −2ηai
(
wi − w∗i

)
= −2ηaiδwi
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Figure 36: Cost landscape E(w) with different curvatures in different directions.

with δwi = wi − w∗u. The effect of learning step on δwi is

δwnew
i = wnew

i − w∗i = wold
i − 2ηaiδwold

i − w∗i = (1 − 2ηai)δwold
i

thus, δwi converges asymptotically to zero iff

|1 − 2ηai| < 1. (59)

We must find an η that satisfies Eq. 59 for all i. When 1 − 2ηai < 0, δwi changes
sign in each iteration. The behavior is illustrated in Fig. 37 with E(w1,w2) =

w2
1 + 20w2

2 for different values of η.

6.5 Non-linear units
We can extend the gradient descent learning rule to the case that the neuron has a
non-linear output:

oµ = g(hµ), hµ =
∑

j

w jξ
µ
j

We use again the quadratic cost criterion:

E1(w) =
1
2

∑
µ

(ζµ − oµ)2

∆wi = −η
∂E
∂wi

=
∑
µ

(ζµ − oµ) g′(hµ)ξµi
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Figure 37: Behavior of the gradient descent learning rule Eq. 58 for the quadratic
cost function E(w1,w2) = w2

1 + 20w2
2 for η = 0.02, 0.0476, 0.049, 0.0505.

When the function g is a monotonous function, it is invertible and one could
also formulate a different cost criterion by observing the identity

ζµ = g(hµ)⇔ g−1(ζµ) = hµ

E2(w) =
1
2

∑
µ

(
g−1(ζµ) − hµ

)2

Note, that E2 has a quadratic dependence on w, as in the linear case (but with
transformed targets g−1(ζµ) instead of ζµ). In general, optimizing either E1 or E2

yield different optimal solutions.

6.6 Stochastic neurons
For o = ±1:

p(o|ξ) =
1
2

(1 + tanh(ho)) , h =
∑

j

w jξ j

When the target distribution is given by q(o|ξ), we use the (conditional) KL diver-
gence as cost function for learning:

E =
∑
µ

∑
o=±1

q(o|ξµ) log
(

q(o|ξµ)
p(o|ξµ)

)
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For a specific training set, we have q(ζµ|ξµ) = 1 and q(−ζµ|ξµ) = 0. Thus,

E = −
∑
µ

log p(ζµ|ξµ)

Gradient descent on this learning rule yields

∂p(ζµ|ξµ)
∂w j

= 2p(ζµ|ξµ)p(−ζµ|ξµ)ζµξµj

∂E
∂w j

= −2
∑
µ

p(−ζµ|ξµ)ζµξµj

= −
∑
µ

(ζµ − 〈o〉µ)ξ
µ
j

This is equivalent with (5.57-58).

6.7 Capacity of the Perceptron
How many patterns can be perfectly mapped by a perceptron:

• Linear perceptron Pmax = N

• Binary perceptron Pmax = 2N

Consider P patterns in N dimensions. Each pattern can be either class (B/W).
How many of the 2P colorings are linearly separable?

• P small, then C = 2P

• P large, then C << 2P
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Proof by induction. Define C(P,N) the number of linearly separable colorings
on P points in N dimensions.

Add one point X. The set C(P,N) consists of

• colorings with separator through X (A)

• rest (B)

Thus,

C(P + 1,N) = 2A + B = C(P,N) + A
= C(P,N) + C(P,N − 1)

Yields

C(P,N) = 2
N−1∑
i=0

(
P − 1

i

)

6.8 Multi-layered perceptrons
The gradient descent learning procedure can be trivially extended to the percep-
tron with multiple layers and multiple outputs as shown in Fig. 31B. In addition
to the input variables ξk and the output variable oi, we have a layer of hidden vari-
ables v j for which no training data are observed. The value of the hidden variables
is computed in terms of the input variables, and the outputs are computed in terms
of the hidden variables:

oi = g

∑
j

wi jv j

 = g

∑
j

wi jg

∑
k

w jkξk


 (60)

The output is now a complex function of the input pattern ξk and the weights w jk

in the first layer of the network and the weights wi j in the second layer of the
network.
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Given a set of P training patterns (ξµk , ζ
µ
i ), µ = 1, . . . , P, we again use the gra-

dient descent procedure to find the weights that minimize the total quadratic error:

E(w) =
1
2

∑
i

∑
µ

(
oµi − ζ

µ
i

)2
(61)

with oµi the output on node i for input pattern ξµ as given by Eq. 60.
For large neural networks with many hidden units, the simple gradient descent

procedure can be quite slow. However, there exist well-known algorithms that
significantly accelerate the convergence of the gradient descent procedure. One
such method is the conjugate gradient method. Treatment of this method is beyond
the scope of this course (see however [5] or Matlab for further details).

Note, that the optimal solution that is found depends on the number of hidden
units in the network. The more hidden units, the more complex functions between
input and output can be learned. So, for a given data set, we can make the error
Eq. 61 as small as we like by increasing the number of hidden units. In fact, one
can show that the multi-layered perceptron can learn any smooth function, given
a sufficiently large number of hidden units.

However, the objective of a learning algorithm is to use the neural network
to predict the output on novel data, that were not previously seen. Increasing the
number of hidden units does not necessarily improve the prediction on novel data.
The situation is illustrated in Fig. 38 for the case of one input variable and one
output variable. The crosses denote the data points that were used for training and
the smooth curve is the neural network solution. For a small number of hidden
units, the solution may look something like Fig. 38A. The solution does not pass
through all the data points. For a larger number of hidden units, the solution may
look something like Fig. 38B. The solution does pass through all the data points
and is more complex. However, the prediction of the more complex network is less
accurate than the simple network for the data point indicated by the circle, which
was not part of the training set. The extend to which the trained neural network is
capable of predicting on novel data is called the generalization performance. The
network with the optimal generalization performance must balance two opposing
criteria: minimization of the error on the training data requires a large number
of hidden units, but the solution should also be sufficiently smooth to give good
prediction.
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Figure 38: Network output versus network input. A) Network with a small num-
ber of hidden units. B) Network with a large number of hidden units. Networks
with more hidden units can implement more complex functions and can better fit
a given training set. However, more complex networks do not necessarily gener-
alize better on novel data.
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6.9 Summary
This chapter is based on [5]. Perceptrons are simple models of feed-forward com-
putation in a network of neurons. Binary perceptrons can be used for classification
problems. Learning is done using the perceptron learning rule. The learning rule
converges in a finite number of iterations if and only if the problem is linearly
separable.

Perceptrons can also be constructed with continuous output, either using a
linear or non-linear transfer function. These perceptrons can be learned using the
gradient descent method. Gradient descent converges asymptotically for any data
set.

The quality of the perceptron can be significantly improved by using multiple
layers of hidden units. The multi-layered perceptron can learn any function by
using a sufficiently large number of hidden units. However, prediction quality on
novel data does not generally increase with the number of hidden units. Optimal
generalization is obtained for a finite number of hidden units.

6.10 Exercises
1. Check dat Dmax = 1

√
3

voor het AND probleem en Dmax = − 1
√

3
voor het

XOR probleem. Het AND probleem in de ξi = ±1 codering is gedefinieerd
als ζ = 1 als ξ1 = ξ2 = 1 and ζ = −1 in alle overige gevallen. Het XOR
probleem is gedefinieerd als ζ = ξ1 ∗ ξ2. Gebruik voor de gewichten vector
w = (w0,w1,w2). (Hint: gebruik w1 = w2 vanwege symmetrie).

2. Beschouw gradient descent in een kostenlandschap gegeven door E = a1x2+

a2y2. Bereken de leerparameter η zodanig dat de convergentie in zowel x
als y richting even snel is.

3. Beschouw een lineair perceptron (sectie 6.4) om de AND functie te leren.

• wat zijn de optimale gewichten en drempels? wat is de optimale kosten
E?

• laat zien dat E > 0 impliceert dat de inputpatronen lineair afhankelijk
zijn.

4. Toon aan dat het gradient descent algoritme Eq. 58 asymptotisch convergeert.
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